
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2009

System level energy management in networked
real-time embedded systems
Sudha Anil Kumar Gathala
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Gathala, Sudha Anil Kumar, "System level energy management in networked real-time embedded systems" (2009). Graduate Theses
and Dissertations. 10826.
https://lib.dr.iastate.edu/etd/10826

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10826&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10826&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10826&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10826&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10826&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10826&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=lib.dr.iastate.edu%2Fetd%2F10826&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/10826?utm_source=lib.dr.iastate.edu%2Fetd%2F10826&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

System level energy management in networked real-time embedded systems

by

Gathala Sudha Anil Kumar

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering

Program of Study Committee:
Manimaran Govindarasu, Major Professor

Zhengdao Wang
Arun Somani

Daji Qiao
Ying Cai

Iowa State University

Ames, Iowa

2009

Copyright c© Gathala Sudha Anil Kumar, 2009. All rights reserved.



www.manaraa.com

ii

DEDICATION

To my beloved mom, Mano Rama Devi, and my dear dad, Jayaprakash Gathala.



www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

CHAPTER 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Networked Embedded System and Design Requirements . . . . . . . . . . . . . 2

1.2 The System-level Energy-aware Resource Management Framework . . . . . . . 5

1.3 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

CHAPTER 2. Energy management in computing system through cross-

layer algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Related work and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Exploiting intra-task structure through early execution . . . . . . . . . . . . . 16

2.3.1 Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Overheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.3 The Early execution criterion . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 The generic early execution algorithm . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Schedulability Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 The conservative early execution (CEE) algorithm . . . . . . . . . . . . . . . . 28

2.6 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



www.manaraa.com

iv

2.6.1 Sensor Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6.2 Video Phone Application . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6.3 Random Task Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

CHAPTER 3. Energy management in communication system using dy-

namic modulation scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Related work and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Problem Statement and ILP Formulation . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 ILP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.2 Problem complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Continuous Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Energy-Aware Heuristic Scheduling Algorithm . . . . . . . . . . . . . . . . . . . 53

3.5.1 Movement Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6.1 Results for uniform node distribution . . . . . . . . . . . . . . . . . . . 59

3.6.2 Results for clustered node distribution . . . . . . . . . . . . . . . . . . . 60

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

CHAPTER 4. Energy management in communication system using power

adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Related work and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 System Model and Problem Formulation . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.3 Problem complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 ILP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Energy-aware Scheduling algorithms . . . . . . . . . . . . . . . . . . . . . . . . 73



www.manaraa.com

v

4.5.1 Motivational example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.2 Greedy Scheduling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.3 Movement Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6 Simulations studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6.1 Results for uniform node distribution . . . . . . . . . . . . . . . . . . . 84

4.6.2 Results for clustered node distribution . . . . . . . . . . . . . . . . . . . 86

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

CHAPTER 5. System level energy management in single hop networks . . 90

5.1 Related work and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 System Model and Problem Statement . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Energy-aware scheduling Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.1 System level energy-time tradeoffs . . . . . . . . . . . . . . . . . . . . . 96

5.3.2 Gain based Static Scheduling (GSS) . . . . . . . . . . . . . . . . . . . . 98

5.3.3 Distributed Slack Propagation Algorithm (DSP)-Dynamic Slack . . . . 100

5.4 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

CHAPTER 6. System level energy management in multi-hop networks . . 111

6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3.1 Problem formulation: Ideal model . . . . . . . . . . . . . . . . . . . . . 120

6.3.2 Problem Formulation: Practical Model . . . . . . . . . . . . . . . . . . . 122

6.4 Energy-Aware Scheduling Algorithms . . . . . . . . . . . . . . . . . . . . . . . 125

6.4.1 System Level Energy-Time Tradeoffs . . . . . . . . . . . . . . . . . . . . 126

6.4.2 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.4.3 Gain based Scheduling Algorithm (GSA) . . . . . . . . . . . . . . . . . 130

6.4.4 Extended Gain based Scheduling Algorithm (EGSA) . . . . . . . . . . . 132

6.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136



www.manaraa.com

vi

6.5.1 Results for low bandwidth conditions . . . . . . . . . . . . . . . . . . . . 137

6.5.2 Results for high bandwidth conditions . . . . . . . . . . . . . . . . . . . 138

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

CHAPTER 7. Conclusions and Future Work . . . . . . . . . . . . . . . . . . 141

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146



www.manaraa.com

vii

LIST OF TABLES

Table 2.1 Power specifications[82, 58] . . . . . . . . . . . . . . . . . . . . . . . . . 16

Table 2.2 Overhead measurements (us: microseconds, ms: milliseconds) . . . . . 20

Table 2.3 Estimated execution times @ 400 MHz . . . . . . . . . . . . . . . . . . 36

Table 4.1 Motivational example: normalized inter-node distances . . . . . . . . . 75

Table 4.2 Parameter values [65] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Table 5.1 Tuple values after each DSP iteration . . . . . . . . . . . . . . . . . . . 105

Table 6.1 Power specifications (from [82]) . . . . . . . . . . . . . . . . . . . . . . 117



www.manaraa.com

viii

LIST OF FIGURES

Figure 1.1 Architecture of the networked system level energy management . . . . 5

Figure 2.1 Computation energy management - related work summary . . . . . . . 13

Figure 2.2 Illustrative example: inter-task schedule . . . . . . . . . . . . . . . . . 18

Figure 2.3 Illustrative example: early execution schedule . . . . . . . . . . . . . . 19

Figure 2.4 Early execution - schedulability tests . . . . . . . . . . . . . . . . . . . 24

Figure 2.5 Early execution - effective CFG modifications . . . . . . . . . . . . . . 28

Figure 2.6 Illustrative example: different schedules . . . . . . . . . . . . . . . . . . 29

Figure 2.7 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 2.8 (a) Effect of utilization at Pb = 0.90 (b) Effect of Pb at U = 0.80 . . . 34

Figure 2.9 Video Phone, DVS settings: (a) Intel PXA255 (b) AMD Opteron . . . 36

Figure 2.10 Effect of utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 2.11 Effect of ACET/WCET . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 2.12 Effect of the best path probability . . . . . . . . . . . . . . . . . . . . . 39

Figure 3.1 Transmission energy: fi, Total energy: fi + Etc + Erc . . . . . . . . . . 51

Figure 3.2 Illustrative example: schedules obtained by different algorithms . . . . 53

Figure 3.3 Energy gain function, Gainij versus bj . . . . . . . . . . . . . . . . . . 55

Figure 3.4 Working of the Movement Algorithm . . . . . . . . . . . . . . . . . . . 56

Figure 3.5 Effect of utilization (N = 10) . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 3.6 Effect of number of modulation levels(U = 0.8) . . . . . . . . . . . . . 61

Figure 3.7 Effect of number of clusters (N = 10, U = 0.8, rc = 0.10) . . . . . . . . 62

Figure 3.8 Effect of cluster radius (N = 10, U = 0.8, vc = 4) . . . . . . . . . . . . . 63



www.manaraa.com

ix

Figure 4.1 Illustrative example: direct hop strategy . . . . . . . . . . . . . . . . . 74

Figure 4.2 Illustrative example: greedy strategy . . . . . . . . . . . . . . . . . . . 76

Figure 4.3 Energy Gain function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 4.4 Illustrative example - Movement Table . . . . . . . . . . . . . . . . . . 81

Figure 4.5 Illustrative example - Movement algorithm . . . . . . . . . . . . . . . . 82

Figure 4.6 Effect of utilization (v = 100, β = 7) . . . . . . . . . . . . . . . . . . . . 85

Figure 4.7 Effect of number of nodes (U = 0.5, β = 7) . . . . . . . . . . . . . . . . 86

Figure 4.8 Effect of the required reliability (v = 100,U = 0.5) . . . . . . . . . . . . 87

Figure 4.9 Effect of number of clusters (v = 50, β = 7, U = 0.5, rc = 0.10) . . . . . 87

Figure 4.10 Effect of cluster radius (v = 100, β = 7, U = 0.5, nc = 10) . . . . . . . . 88

Figure 5.1 Task and CPU model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Figure 5.2 System level energy-time tradeoffs . . . . . . . . . . . . . . . . . . . . . 97

Figure 5.3 Illustrative example: input schedule . . . . . . . . . . . . . . . . . . . . 99

Figure 5.4 Working of the GSS algorithm . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 5.5 Illustrative example: online schedule . . . . . . . . . . . . . . . . . . . 103

Figure 5.6 Slack Propagation Tree (SPT) . . . . . . . . . . . . . . . . . . . . . . . 103

Figure 5.7 Schedule after one traversal of SPT . . . . . . . . . . . . . . . . . . . . 105

Figure 5.8 Effect of channel bandwidth . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 5.9 Effect of BCET
WCET

at W = 1KHz . . . . . . . . . . . . . . . . . . . . . . 108

Figure 5.10 Effect of BCET
WCET

at W = 1000KHz . . . . . . . . . . . . . . . . . . . . 109

Figure 5.11 Effect of slack factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Figure 6.1 Data Aggregation Tree Model . . . . . . . . . . . . . . . . . . . . . . . 116

Figure 6.2 System level energy-time tradeoffs . . . . . . . . . . . . . . . . . . . . . 127

Figure 6.3 Illustrative example: Data aggregation tree . . . . . . . . . . . . . . . 129

Figure 6.4 Illustrative example: Input schedule (Total energy consumption = 18.99mJ)130

Figure 6.5 Illustrative example: Greedy slack allocation schedule (Total energy

consumption = 13.25mJ) . . . . . . . . . . . . . . . . . . . . . . . . . . 131



www.manaraa.com

x

Figure 6.6 Illustrative example: GSA schedule (Total energy consumption = 9.38mJ)133

Figure 6.7 EGSA: Motivational example . . . . . . . . . . . . . . . . . . . . . . . 134

Figure 6.8 Effect of radius factor (Rf ) . . . . . . . . . . . . . . . . . . . . . . . . . 138

Figure 6.9 Effect of computational workload (C) . . . . . . . . . . . . . . . . . . . 139

Figure 6.10 Effect of radius factor (Rf ) . . . . . . . . . . . . . . . . . . . . . . . . . 139

Figure 6.11 Effect of slack factor (Sf ) . . . . . . . . . . . . . . . . . . . . . . . . . 140



www.manaraa.com

xi

ACKNOWLEDGEMENTS

I submit all glory and honor to my god, Lord Jesus Christ, for he is the one who watched

over me and presented me with this day. God blessed me with the company of an amazing set of

people - my teachers, my friends, and my family. In the following, I would like to acknowledge

some of these people who helped me to complete my graduate education successfully.

First and foremost, I would like to thank my advisor, Prof. Manimaran Govindarasu, for

his excellent guidance during my stay at Iowa State University. It is a great opportunity to

work with this extremely capable and blessed Professor.

Dr. Manimaran exhibited great patience and took utmost care in training me. During

the initial phase of my PhD, he carefully observed and identified different areas in which I

could improve to succeed as a researcher in the longer term. Subsequently, he provided me

with ample opportunities that allowed me to shape myself as an independent researcher. In

particular, he helped me to develop clear thinking and establish good technical writing and

presentation skills. Throughout, he insisted in performing better, and encouraged me to reach

the highest standards in everything I tried. It is always a pleasant experience to recall from

where I started, and where I confidently stand today. If not for my advisor, I wouldn’t be here.

I express my deepest gratitude towards him. God bless Dr. Manimaran and his family.

I would also like to thank Prof. Zhengdao Wang for his collaboration in the research work.

Dr. Wang has spent long hours with me in technical discussions, and presentations. He also

helped me in reviewing my research papers and always gave very useful feedback. I am very

grateful to him for all his help and encouragement.

I would further like to thank Dr. Arun Somani for giving me an opportunity to work with

him. I am thankful to him for all his valuable suggestions. I also wish to thank Dr. Daji Qiao



www.manaraa.com

xii

for being a very friendly and supportive Professor.

I thank all my past and present research lab members: Muthuprasanna Muthusrinivasan,

Mohammad Fraiwan, Kavitha Balasubramanian, Basheer Al-Duwairi, Durga Kocherlakota,

Suzhen Lin, Benazir Fateh, and Kayalvizhi Manimaran. It was great working with these

people and I certainly learned something from each one of them.

I would like to thank my friends: Veerendra Allada, Pavana Vennapusa, Srikanth Komarina,

Satya Saripalli, Prasad Avirneni, and Nishanth Gaddam. It is these people who made my stay

at Iowa State University a fun filled journey. I am thankful to each one of them.

I would specifically like to thank my friend, Dinesh Rajan, for patiently attending all

my practice presentations before my preliminary and PhD final examinations. He always

encouraged me and gave very constructive feedback. I sincerely thank him for all his help.

Finally, I owe my warm gratitude to my beloved Mom, Mano Rama Devi, and my dear

Dad, Jayaprakash Gathala, for believing in me with their unconditional love and support. I

thank my brothers, Sudha Sunil and Sudha Kiran, and my sister, Padma Rajyam, for their

constant encouragement and love.



www.manaraa.com

xiii

ABSTRACT

Real-time embedded systems play a prominent role in a variety of applications ranging from

medical sensors in human body to signaling sensors in war fields. The consumer domain of

the embedded devices is large and ever increasing. A natural result of this trend coupled with

those in sensor technologies and wireless communications have led to the rise of a new class

of systems, called the networked real-time embedded systems. While the networked embedded

systems enable newer and functionally richer applications, they pose major research challenges

due to the complex requirements of satisfying temporal and reliability constraints in a resource

limited distributed computing environment.

This dissertation develops a comprehensive algorithmic framework for system-level energy

management in networked real-time embedded systems, with the goal of optimizing the energy

consumption while satisfying application requirements (deadlines and precedence relations)

and channel reliability constraints. The energy-management problem is decomposed into three

levels and research contributions are made for each level: computing subsystem level, commu-

nication subsystem level, and the system level.

For the energy management at computing subsystem level, cross-layer energy-aware task

scheduling algorithms are presented which employ the dynamic voltage scaling (DVS) power

management technique to minimize the processor energy consumption while meeting all the

task deadlines. Simulation studies show that the presented cross-layer algorithms yield en-

hanced processor energy savings compared to the existing algorithms for a variety of workload

conditions. The communication energy management is addressed considering two different

power management techniques namely, dynamic modulation scaling (DMS) and power adap-

tation. In each case, the energy-aware message scheduling problem is formulated tackling



www.manaraa.com

xiv

which both analytical and algorithmic solutions are presented. Performance results show that

the proposed polynomial-time heuristic scheduling algorithms offer comparable energy savings

to that of the analytically derived optimal solutions.

Thirdly, system-level energy management is addressed for a model where the individual

nodes in the network support both DVS and DMS techniques. This work is the first of its kind

that combines compute-level and communication-level energy management in an integrated

manner. Tradeoffs between compute and communication energy consumption is established

and cut-off region that favors one over the other is derived based on task/message and system

characteristics - current processor frequency, current radio modulation level, task deadline,

channel bandwidth, source-destination distance. Further, specific system-level energy-aware

scheduling problems are formulated for single-hop and multi-hop networked embedded sys-

tems with deadline constraints. For the problems, based on the above system-level tradeoff

analysis, novel algorithms for combined optimization of computation and communication en-

ergy are presented. Our performance results show that the proposed system-level energy-aware

algorithms perform significantly better than the corresponding component-level algorithms.

In conclusion, this dissertation advances the state-of-the-art research in energy manage-

ment in networked real-time embedded systems through an integrated framework and associ-

ated cross-layer algorithms and analyses. The system-level energy management formulation

provides several avenues for further research, which include instantiating different power man-

agement techniques for computing and communication energy optimizations and studying their

tradeoffs.



www.manaraa.com

1

CHAPTER 1. Introduction

Real-time systems have undergone an evolution in the last few years in terms of their

number and variety of applications as well as in complexity. A natural result of these advances

coupled with those in sensor techniques and networking have led to the rise of a new class

of application which fall into the distributed real-time embedded systems category [1, 2, 3].

Recent technological advancements in device scaling have been instrumental in enabling the

mass production of such devices at reduced costs. As a result, applications with a number of

internetworked embedded systems have become prominent. At the same time, there has been a

need to move from stand-alone real-time unit into a network of units that collaborate to achieve

a real-time functionality [4]. Extensive research has already been carried out to achieve real-

time guarantees over a set of nodes distributed over wired networks [5]-[9]. However, there exist

a number of real-time applications in domains such as industrial processing, military, robotics

and tracking, which require the nodes to communicate over the wireless medium where the

application dynamics prevent the existence of a wired communication infrastructure. These

applications present challenges beyond those of traditional embedded or networked systems

since they involve many heterogeneous nodes and links, shared and constrained resources, and

are deployed in dynamic environments with changing participants where resource contention

is dynamic [2]. Hence, resource management in embedded real-time networks requires efficient

algorithms and strategies that achieve competing requirements such as time-sensitive energy-

efficient reliable message delivery. In what follows, we discuss some applications in this category

and discuss their requirements and challenges.

Safety-critical mobile applications running on resource-constrained embedded systems will

play an increasingly important role in domains such as automotive systems, space, robotics



www.manaraa.com

2

and avionics [1]. The core controlling module in such mission critical applications is an em-

bedded system consisting of a number of autonomous components. These components form

a wireless ad hoc network for cooperatively communicating with each other to achieve the

desired functionality. In these applications, a failure or violation of deadlines can be disastrous

leading to loss of life, money or equipment. Hence, there arises a need to coordinate and

operate within stringent timing constraints overcoming the limitations of the ad hoc wireless

network. For example, robots used in urban search and rescue cooperate together and with

humans in overlapping workspaces. For this working environment to remain safe and secure,

not only must internal computations of robots meet their deadlines, but timely coordination of

robots behavior is also required [4]. Other such medium-scale distributed real-time embedded

applications include target tracking systems that perform surveillance, detection and tracking

of time critical targets or a mobile robotics application where a team of autonomous robots

cooperate in achieving a common goal such as using sensor feeds to locate trapped humans in

a building on fire.

These applications need to meet certain real-time constraints in response to transient

events, such as fast-moving targets where the time to detect and respond to events is shortened

significantly. In surveillance systems, for example, communication delays within sensing and

actuating loops directly affect the quality of tracking. While providing real-time guarantees is

the primary requirement in these applications, mechanisms need to exist to meet other crucial

system needs such as energy consumption and accuracy. In most cases, there are tradeoffs

involved in balancing these competing requirements.

1.1 Networked Embedded System and Design Requirements

The typical architecture in a distributed real-time embedded system consists of several

processor controlled nodes interconnected through one or more interconnection networks. The

system software running on each node enables the execution of one or more concurrent tasks

which is activated by the arrival of triggering events generated by the external environment,

a timer or arrival of a message from another task. A response to an event generally involves



www.manaraa.com

3

several tasks to be executed on different nodes and several messages to be exchanged in the

network. The tasks on the same node may share data and resources using the normal synchro-

nization mechanisms present in shared memory systems and also interact with tasks on other

nodes by exchanging messages using the services provided by the communication subsystem.

For the proper functioning of the whole system, each individual task as well as all the messages

exchanged need to complete before stringent deadlines.

The workload in majority of the distributed embedded real time applications is similar

to those found in traditional real-time systems comprising of periodic and aperiodic tasks.

Periodic tasks form the base load invoked at regular intervals while aperiodic tasks include the

transient load generated in response to alarm or an external environment stimuli. However,

one can expect stronger cooperation between the internetworked units in more dynamic and

complex systems inducing richer communication patterns than simple periodic messages.

For distributed real-time embedded system, the primary requirement is that there is an end-

to-end timing requirement that needs to be met. This implies that there exists a set of messages

with complex precedence constraints that need to be exchanged between the networked nodes

before some deadline. Hence, one needs to characterize the different message communications

and computations that are possible and perform a pre-runtime analysis to guarantee apriori

that all the task deadlines will be met after. Moreover, in a distributed real-time system,

the ability to meet task deadlines largely depends on the underlying task allocation, and

hence, we need a pre-runtime task allocation algorithm that takes into consideration the real-

time constraints [5, 6, 8, 9]. Intertask communication significantly influences the response

time of these distributed application and hence the design needs to account for the effect of

delays imposed by the communication network and precedence constraints imposed by the

communicating tasks during task allocation.

Since the inherent nature of many of the discussed applications precludes the use of wired

networks, wireless networks are commonly used in such applications. The wireless medium is

inherently unreliable due to characteristics such as fading and interference. Hence to guarantee

that tasks should meet timing constraints, it becomes necessary to develop techniques that



www.manaraa.com

4

characterize the unreliability in the network channel characteristics and take them into account

while making scheduling decisions.

Energy management is another crucial aspect for internetworked embedded devices. These

devices contain not only radio and computer components, but also complete system function-

alities, such as networking functions across all levels of the protocol stack. Energy savings and

allocation among these modules will affect the life time of these battery-powered devices. En-

ergy management also needs to be considered together with other constraints in size, real-time

requirements, functionalities, and network connectivity.

In this thesis, we address the problem of energy-aware resource management in networked

real-time embedded systems over a wireless network. This requires energy management at

the computing subsystem, communication subsystem, and at the system level integrating the

two. For the computing system, there are well known techniques, such as dynamic voltage

scaling (DVS) in CMOS technology [10], that have been used by inter-task [11]-[17] and intra-

task [18]-[31] scheduling algorithms for energy savings in embedded systems. Moreover, there

are research efforts that focus on a combination of processor, memory [32], and I/O devices

in an integrated manner [33, 34, 35] to improve the overall energy savings of stand-alone

embedded systems. For the communication system, techniques such as dynamic modulation

scaling (DMS) [36]-[76], power adaptation [40], and cross-layer designs [41]-[45] have been

proposed for minimizing energy consumption in wireless and sensor networks. The objectives

and workloads that are relevant to these wireless sensor networks are much different from that

of the networked real-time embedded systems, and hence those techniques cannot be directly

applied to the networked system considered in this dissertation.

Not only does there exist plenty of room to improve the energy savings offered by these task

and message scheduling algorithms, but also there is a greater opportunity to look at the system

as a whole balancing the tradeoff between energy savings in computing vs. communication so

as to maximize the overall system energy efficiency. The research presented in this dissertation

fills this void by developing energy-aware algorithms which would appropriately leverage the

low power modes supported by different subsystems (both computation and communication



www.manaraa.com

5

subsystems) within each node of the network to obtain enhanced system-level energy savings.

1.2 The System-level Energy-aware Resource Management Framework

The major challenge in performing energy management in networked embedded systems

lies in estimating the exact workload required by the application. As the exact workload

determines the least power mode that the device can operate at while meeting the deadlines.

In case of local computation, the workload refers to the task execution times which exhibit

a wide variation from their worst case estimates. Most of the existing work speculate the

task execution times. On the other hand, in the case of messages, the workload refers to

the number of retransmissions required over a wireless link for a successful transmission. In

our research, we consider both real-time constraints and channel conditions (reliability) while

achieving energy efficiency of the networked embedded system. The proposed energy-aware

resource management approach, shown in Figure 1.1, has the following three key components:

Figure 1.1 Architecture of the networked system level energy management

1. Energy Management at Computing Subsystem: This deals with the energy-aware

real-time scheduling of tasks on a local node. Specifically, the goal is to minimize the pro-

cessor energy consumption while meeting all the task deadlines. We present a cross-layer



www.manaraa.com

6

task scheduling algorithm that exploits intra-task information - such run-time branching in-

formation - provided at the granularity of control flow graph (CFG) of a task to minimize

the processor energy consumption, employing DVS [10] technique. CFG represents the block

level control flow structure of the program, with each node in the CFG denoting a basic block

of computation and each edge in the CFG indicating a control dependency between two ba-

sic blocks. These algorithms can be employed in networked as well as stand-alone embedded

systems.

2. Energy Management at Communication Subsystem: This deals with the energy-

aware real-time scheduling of the inter-node messages over the wireless medium that is prone

to phenomenon such as, fading, noise, and interference. Specifically, given a set of messages

each with a source and a destination, the goal is to transmit them with the objective of

minimizing the energy consumption of the communication subsystem while meeting all the

message deadlines with a given probability of success. Due to the fading and noisy nature of

the wireless channel, it is not feasible to guarantee 100% reliability.

3. Energy Management at the Networked System Level: In a typical networked em-

bedded application, each node performs some local computation (task) and communicates the

results (message) to a remote node in the network. Both task and message deadlines need to be

met in order to provide end-to-end deadline guarantees. Further, to minimize the total energy

consumption while guaranteeing the deadlines, the algorithm needs to optimally distribute the

available slack among different tasks and messages. Task utilizes the slack to perform DVS

while the message uses the slack to perform DMS or any other similar technique which tradeoffs

time for energy. In general, the computation energy is much lesser than the communication

energy. Therefore, giving as much slack as possible for communication sounds appealing on

the surface. However, as can be seen from a more refined analysis, there is diminishing returns

when the transmission time is increased beyond a certain threshold. Therefore, there should

be a balance between the computing subsystem and the communication subsystem in slack

distribution.

Since the grand problem of energy-aware real-time scheduling in networked embedded sys-



www.manaraa.com

7

tem is very complex (even its non-energy, non-real-time version itself is NP-complete [46]),

we adopt a modular approach wherein the proposed generic algorithms/techniques build upon

existing real-time scheduling algorithms to significantly improve their energy performance.

Specifically, (1) for computing system, the proposed cross-layer design techniques work in

conjunction with inter-task DVS algorithms (e.g., [11]-[17]); (2) for communication system,

the proposed modulation and power-adaptation based techniques work in conjunction with

medium access control protocols (e.g., [85, 86, 87]) in wireless networks; (3) for the networked

system, the proposed tradeoff-based slack distribution algorithms assume the existence of un-

derlying integrated task and message schedules produced by a distributed real-time scheduling

algorithm (e.g., [5]-[9]).

1.3 Thesis Statement

This dissertation addresses the energy management problem in networked embedded real-

time systems. We provide a comprehensive solution to this problem by addressing the energy

management at computing and communication subsystems of individual nodes in the network.

For computation energy management, we present a cross-layer approach which uses compiler

generated control-flow information of different tasks at the operating-system level. Following

this approach we are able to achieve enhanced processor energy savings when compared to

the existing single layer (i.e., stand alone compiler-level or os-level) energy management tech-

niques. For communication energy management, by considering the communication workload

at different nodes in the network along with the wireless channel conditions, we are able to

achieve significant communication energy savings while providing reliable and timely message

delivery over the shared wireless network.

Furthermore, exploring a new dimension in the solution space of the energy management

problem, this thesis establishes a novel system-level framework to perform integrated compu-

tation and communication energy management. This approach is significantly different from

the existing component-level energy management techniques that are popular in the literature.

The proposed system-level framework allows us to perform resource (i.e., time and energy) al-



www.manaraa.com

8

locations across the computation and communication subsystems. We have applied the above

approach to both single-hop and multi-hop networked embedded real-time systems considering

specific applications in each case. Our results show that the proposed system-level approach

yields much higher energy savings than the corresponding component-level algorithms.

1.4 Organization

The rest of the dissertation is organized as follows.

• In chapter 2, we address the energy-aware real-time task scheduling problem where the

objective is to minimize the processor energy consumption while guaranteeing all the

task deadlines. Firstly, we present a detailed review of the existing work in this context.

We then present our generic cross-layer task scheduling algorithm that exploits intra-task

information - such as run-time branching information - provided at the granularity of

control flow graph (CFG) of a task to minimize the overall processor energy consumption.

We present our simulation results towards the end of the chapter.

• Chapters 3 and 4 deal with the communication energy management. We address the

energy-aware real-time message scheduling problem where the objective is to minimize

the total communication energy consumption while meeting message dealine and relia-

bility constraints. Chapter 3 employs Dynamic Modulation Scaling (DMS) as the basic

underlying energy management technique while chapter 4 employs the technique of hop-

by-hop transmissions. In each chapter, we prove that the corresponding problem is

NP-Hard and provide ILP formulations to solve the problem optimally. Further, we also

present polynomial time heuristic scheduling algorithms. Finally, we present our results.

• In chapter 5, we address the system-level energy managment problem involving both

messages and tasks. we consider a single-hop networked real-time embedded system

where each node supports both dynamic voltage scaling (DVS) and dynamic modulation

scaling (DMS) power management techniques to tradeoff time for energy savings. In this

model, we address the problem of scheduling periodic complex tasks where each task



www.manaraa.com

9

consists of several precedence constrained message passing sub-tasks. Our contributions

towards this problem are two fold. First, we analyze the system level energy-time trade-

offs considering both the computation and communication workloads by defining a novel

energy gain metric. We then present static (centralized) and dynamic (distributed) en-

ergy gain based slack allocation algorithms which reduce the total energy consumption,

while guaranteeing the ready time, deadline and precedence constraints. Towards the

end of the chapter, we present our simulation results.

• In chapter 6, we address the system-level energy management problem for a particular

mult-hop networked embedded system. Specifically, we tackle the problem of minimizing

the total energy consumption of data aggregation with an end-to-end latency constraint

while taking into account both the computational and communication workloads in the

network. First, we present an analytical problem formulation for the ideal case where each

node can scale its frequency and modulation continuously. Second, we present a Mixed

Integer Linear Programming (MILP) formulation to obtain the optimal solution for the

practical case where only few discrete frequency and modulation levels are supported

by each node. Further, we present polynomial time heuristic algorithms, which employ

the energy-gain metric established in chapter 5. Finally, we present our results and

discussions.

• In chapter 7, we present our conclusions and identify several interesting energy-aware

resrearch problems in the networked embedded real-time systems area.



www.manaraa.com

10

CHAPTER 2. Energy management in computing system through

cross-layer algorithms

This chapter deals with the energy management at computation subsystem level. Specifi-

cally, we concentrate on the minimization of processor’s energy consumption in a uni-processor

model. Most of the embedded processors are based on CMOS technology. CMOS based pro-

cessors have both static and dynamic power dissipation [10]. The static power consumption

is contributed by the leakage current and is present even when the circuit is not switching.

On the other hand, the dynamic power dissipation is entirely due to the switching activity of

the processor. Although there is a rising concern for the increased static power component in

latest CMOS processors, we believe that the dynamic power is still the dominant component

in the overall processor power consumption.

In this work, we concentrate on the dynamic power consumption of the processor which is

given by [10]

Pdyn ∝ V 2
ddf (2.1)

where Vdd is the supply voltage and f is the processor switching frequency. As per the

above equation, the energy dissipated per cycle is directly proportional to the square of the

supply voltage,Vdd . A widely used technique that exploits this characteristic is the Dynamic

Voltage Scaling (DVS), whose goal is to choose the supply voltage and operating frequency

as per the performance level required by the tasks. DVS allows to tradeoff the processor’s

speed for the energy savings. Since the energy consumption is directly proportional to the

square of the supply voltage, DVS can make significant energy savings. Several energy aware

real-time DVS algorithms have been proposed addressing a wide range of scheduling problems



www.manaraa.com

11

for a variety of task models.

2.1 Problem Statement

We address the following energy aware scheduling problem: Given a set of periodic real-

time tasks, the objective is to minimize the processor’s energy consumption while meeting all

the task deadlines.

This problem can be optimally solved if the exact execution times of all the tasks are known

apriori [18]. However, the task execution times often vary from the worst-case estimation and

it is this non-determinism which makes the problem harder to solve. The existing solutions to

this problem can be broadly classified into three classes based on the execution time models

they follow: In the first class of algorithms [47, 48, 49, 50], the execution time of each task is

assumed to follow a probabilistic distribution with a known worst-case bound. In the second

class of algorithms [78, 52], the worst case execution time of each task is expressed as a function

of parameters like number of memory accesses or the number of loop iterations with the aim

of achieving a tighter worst-case bound on the execution time. Finally, in the third class of

algorithms [11, 79, 14], the actual execution time is bounded by the worst-case execution time

and no further assumptions are made with respect to the actual execution times. Therefore,

in this class of algorithms the worst-case estimate is very conservative and hence exploiting

the ample dynamic slack generated becomes very important for energy savings. Although

the early execution technique presented here can be easily adopted to all the three models

described above, in the rest of the chapter, we follow the third model due to its generality.

The existing real-time DVS algorithms can be further classified into intra-task and inter-

task DVS algorithms based on the granularity at which the voltage scaling is performed. The

intra-task voltage scaling algorithms [54, 21, 20, 19, 27, 55, 28, 31] adjust the supply voltage

within a task boundary at a finer granularity for example, at the basic block level. The inter-

task voltage scaling algorithms [11, 79, 14] perform voltage scaling on a task by task basis.

An inter-task DVS scheme works with a set of tasks where as an intra-task scheme works with

a single task. The early execution algorithms presented in this chapter work with a set of



www.manaraa.com

12

periodic tasks and perform both basic block level and task level voltage scaling.

2.2 Related work and motivation

A typical energy aware real-time DVS algorithm consists of the following four components:

• Slack Recognition Points: It refers to the point or the granularity at which the algorithm

recognizes the dynamic slack generated in the schedule. For example, in [55] the slack is

recognized by the PMHs (Power Management Hints) at the code segment level.

• Slack Recognition Mechanism: It refers to the mechanism employed by the DVS algo-

rithm to obtain this information. For example, in [55], insertion of the PMHs into the

application code is the slack recognition mechanism and this is performed at the compiler

level.

• Slack Usage Point: It is the point in schedule, when the recognized slack is exploited in

some algorithm dependent way. In [55], the PMPs (Power Management Points) are the

slack usage points.

• Slack Usage Mechanism: It refers to the mechanism employed by the DVS algorithm to

use the slack for energy savings which is typically the processor’s frequency and voltage

adjustment.

The DVS algorithms differ from each other while being different in one or more of the

four components. For example, conventional intra-task algorithms [54, 20] have the slack

recognition points and the slack usage points to be the same. On the other hand in [55], they

have been decoupled as PMHs and PMPs. Figure 2.1 shows the four components for different

DVS algorithms.

Interestingly, most of the existing real-time DVS algorithms including [52, 11, 79, 55] work

in the following two step framework. At each slack usage point:

1. Obtain the maximum usable/safe slack (Smax) as updated at the latest slack recognition

point.



www.manaraa.com

13

Figure 2.1 Computation energy management - related work summary

2. Adjust the operating frequency of the processor to use Sa amount of slack based on the

slack usage mechanism. Where, Sa ≤ Smax.

For example, the intra-task algorithm presented in [55], at each power management point

obtains the dynamic slack notified by the latest PMH (step 1) and adjusts the operating

frequency accordingly (step 2). Similarly, most of the other RT-DVS algorithms follow the

above framework.

Depending on the exact slack usage mechanism Sa is either equal to Smax or strictly less

than Smax. This decision is typically made by speculating the actual execution times of the

ready tasks which are yet to complete. For example, the look-ahead EDF [11] speculates the

best case execution times for the future tasks and hence aggressively reduces the operating

frequency of the current task. On the other hand, DRA (Dynamic Reclaiming Algorithm)



www.manaraa.com

14

[79] and cycle conserving EDF [11] implicitly assume a worst case work load for the future

task instances. The AGR (Aggressive Speed Adjustment) [11] performs DVS speculating an

average workload rather than best or worst case workloads. In [30], the actual execution

times are estimated using feedback control theory and this amount of computation is oper-

ated at least possible frequency while the rest is operated at the maximum frequency. This

kind of speculation or estimation based frequency adjustment cannot reduce the energy con-

sumption effectively when the speculation/estimation goes wrong. With this motivation, in

this chapter, we present a technique which uses a part of the available slack for reducing the

non-determinism in task execution times and hence the need for speculation. The rest of the

slack plus the additional slack generated due to the reduction in non-determinism is used for

reducing the operating frequency. Thus our work in this chapter, differs from the existing

RT-DVS algorithms in the slack usage mechanism.

The basic idea of our early execution technique which is targeted for a multi-task

setup is as follows. At the slack usage point, whenever some non-zero slack (Smax) is available

the early execution technique tries to execute the branch instructions of the other ready tasks

using this slack which will otherwise be executed later. This early execution of the branch

instructions is done with the aim of reducing the non determinism involved in the actual

execution times of the future tasks as early as possible. Since dealing at instruction level

incurs a lot of overhead, in this chapter we work at the basic block level. More specifically, we

work with the control flow graph (CFG) of each task and perform early execution of the basic

branch blocks. Typical intra-task DVS algorithms assume a block size of the order of 10 ∗ 106

CPU execution cycles [20]. We followed a similar model in this chapter. In cases where the

basic block size is much lesser, we assume a sequence of blocks (a sub-graph in the CFG) are

composed into a large enough basic block. The early execution technique is independent of

the task code model and can be used in other non-CFG models as well, however, due to the

clarity that the CFG model offers we have chosen to use this model here.

The work which is closely related to our research in terms of the motivation is presented

in [50, 56]. In [56], the authors find the best order of the tasks for execution in a frame based



www.manaraa.com

15

setup with the aim of reducing the biggest non-determinism as early as possible. The basic idea

there is to execute the task which has the largest variation between the worst case execution

time and expected execution time first. In [50], the authors came up with a priority metric

based on which the task’s execution order can be chosen. Although the need for reducing

the non-determinism was well motivated and expressed in [56], their work is very restricted.

In [50, 56], they consider only the frame based tasks and the presented solutions cannot be

directly applied to a more general setup. While the early execution technique presented in

this chapter can very well be adopted to a more general setup of periodic tasks with different

periods and deadlines. In [56], the authors extended their work from frame based setup to

handle more general cases. For the unique period and different deadline case, they propose

to use the static priority algorithms like DMS (Deadline Monotonic Scheduling) and try to

order the tasks which have the same deadlines which is a very restrictive case. No further

mention was made regarding the task ordering for the different period and different deadline

case. Unlike the work presented in [56], the early execution technique presented here can very

well be used with dynamic priority algorithms like EDF as well. Also, our early execution

technique works at a much fine grained level i.e. at the basic block level and hence can make

much better energy savings.

Technically, the early execution concept presented in this chapter can be employed along

with any of the above existing multi-task DVS algorithms to further enhance the energy sav-

ings. However, the deadline guarantees and other properties provided by the underlying DVS

algorithm need to be reconsidered while employing the early execution technique. Working

out the details for employing early execution technique for each of the above algorithms would

be an exhaustive exercise. Therefore, in this chapter, we restrict ourselves to the inter-task

algorithms and present a generic early execution algorithm which can applied over many of the

existing inter-task algorithms. We also prove that our generic early execution algorithm does

not violate any of the deadline guarantees provided by the underlying inter-task algorithms.

The rest of the chapter is organized as follows: in section 2.3, we present the basic idea

of the proposed early execution algorithm along with an illustrative example. We also outline



www.manaraa.com

16

the different overheads that the early execution algorithm would incur and provide a series

of tests that need to be checked to guarantee deadline constraints. In section 2.4, we present

our generic early execution algorithm and estimate the cost of the algorithm in terms of the

measured overhead parameters. In section 2.5, we introduce negative early executions and

extend the generic early execution algorithm to avoid such energy inefficient early executions.

We present our simulation results in section 2.6 and final discussions in section 2.7.

Symbol AMD AMD PXA255 PXA255

Mode Power Mode Power

fhigh 2000 MHz 89 W 400 MHz 411 mW

fmid 1800 MHz 66 W 300 MHz 283 mW

flow 1000 MHz 22 W 200 MHz 175 mW

Idle StopGrant 4.1 W 33MHz@Idle 45 mW

Table 2.1 Power specifications[82, 58]

2.3 Exploiting intra-task structure through early execution

The proposed early execution technique aims at minimizing the total energy consumption

by reducing the non-determinism in the workload, this is achieved by exploiting the intra-

task structure (i.e, CFGs) of the individual tasks at the inter-task level. The early execution

algorithm uses intra-task structure in the following two ways:

• Early execution of basic branch blocks: Whenever the current task generates slack at

run-time due to the shorter branch execution, the early execution algorithm uses this

slack to execute the basic branch blocks of the other ready tasks rather than using the

entire available slack for slowing down the processor.

• Fine grained estimation of average utilization: Even after performing early execution,

there remains some non-determinism in the workload. In order to handle it, our algorithm

also estimates the average utilization and update it after the completion of every basic

branch block. The estimated average utilization is used to limit the aggressiveness of the



www.manaraa.com

17

underlying inter-task algorithm so that the speed adjustment is justified by the average

workload. We underline that our approach of estimating the average utilization is more

powerful than the existing inter-task level approach of estimating the average utilization

[79]. This is because our intra-task level estimate of the average utilization allows a

quicker adaption to the exact execution times within the task as opposed to after the

task.

In the following subsection, we present a working example to demonstrate the effectiveness

of our early execution concept and compare it with the existing inter-task algorithms.

2.3.1 Illustrative example

Consider a simple task set with two tasks: T1 & T2. The individual block sizes, worst

case computation (WCi) and the deadline of each task are expressed as the number of CPU

execution cycles. The absolute ready time (Ri), period (Pi) and deadline (Di) can be obtained

by dividing them with fhigh, the highest frequency supported by the processor. Consider the

task parameters of T1 & T2:

• R1 = 0, WC1 = 100 ∗ 106, P1 = D1 = 225 ∗ 106

• R2 = 0, WC2 = 100 ∗ 106, P2 = D2 = 225 ∗ 106

In the following, we will work with the AMD Opteron power specifications (see table 1). The

absolute period and deadline times for the above tasks are: P1 = D1 = (225∗106/2000MHz) =

112.5ms. Similarly, P2 = D2 = 112.5ms. The CFGs of the two tasks are shown in figure 2.2.

The highlighted paths (T1: B11, B12 & T2: B21, B22) execute more often due to program

path locality. Since both the tasks have equal deadlines and ready times, we assume the EDF*

scheduling policy [79] which schedules the lowest index task first among the equal priority

tasks.

For the given task set, most of the inter-task DVS algorithms including the Look-ahead

EDF, AGR, DRA, OTE (One Task Extension) produce the same frequency settings as shown

in figure 2.2. Since the inter-task schemes have no idea of what the actual execution times



www.manaraa.com

18

Figure 2.2 Illustrative example: inter-task schedule

are going to be, they start out with the 1800 MHz frequency (which is the minimum safe

frequency to meet all the deadlines) assuming a worst case workload. At the completion of

task T1 (time = 95/1800 = 52.78 ms), the inter-task algorithms see a slack of 5 ∗ 106 cycles

(or 5/1800 = 2.7 ms), but cannot reduce the frequency any further, once again assuming the

worst case computation for task T2. At time 63.89ms (= 52.78 + 20/1800 ms), the inter-task

algorithms see that the actual workload is much less than the worst case workload. However,

there is no computation left to utilize the available slack (from time 63.89 ms to time 112.5

ms) and hence the slack is left unused. The energy consumption of the task set as per the

inter-task schedule is Einter = 63.89 ∗ 66 + (112.5 − 63.89) ∗ 4.1 = 4416.0mJ (milli Joules).

Where the power consumption from time 0 to 63.89 ms is chosen as 66 W and for the rest of

the time an idle power of 4.1 W is used as per table 2.1.

Now, consider the schedule obtained by performing early execution in figure 2.3. At time

0, the task T1 starts with the 1800 MHz frequency and completes the basic block B11 at

time = 5.56 ms and notifies the slack generated as 5 ∗ 106 cycles (or 2.7 ms) to the early-

execution scheduler. The early-execution scheduler schedules the T2’s branching block (B21)

which can be accommodated in the generated slack. By doing this, at time 7.78 ms, the early-



www.manaraa.com

19

Figure 2.3 Illustrative example: early execution schedule

execution scheduler knows the exact workload till time 112.5 ms and hence it uses most of

the available slack to schedule the rest of the computations at a much lower frequency of 1000

MHz (obtained as, 101 ∗ 106/(112.5 − 7.78) = 964MHz < 1000MHz) as shown in the figure.

The energy consumption of the early execution schedule is Eearly = 7.78∗66+(108.78−7.78)∗

22 + (112.5− 108.78) ∗ 4.1 = 2750.73 mJ. Clearly, by breaking the non-determinism due to the

execution of basic blocks of different tasks at a much earlier time, the early execution scheduler

is operating a large amount of computation at a much lower frequency while still guaranteeing

the deadlines. In the rest of the chapter, we call the task which offers the early execution time

as the host task and the task which executes its decision basic blocks as the guest task. In

this example, T1 is the host task and T2 is the guest task.

Figure 2.3 also shows the schedule produced by the clairvoyant scheduler which by definition

knows the exact workload (the computation times) at time 0 and hence operates at the optimal

speed(s) (115/112.5 = 1022MHz, therefore operates at 1000MHz and 1800MHz, as 1000 <

1022 < 1800) as per the actual workload. The energy consumption incurred by the clairvoyant

algorithm is EClair = (109.375) ∗ 22 + (112.5 − 109) ∗ 66 = 2612.5 mJ. In this example, the

proposed early execution technique achieves about 37.70% of energy savings over the inter-



www.manaraa.com

20

task schemes and it incurs about 5.02% more energy than the clairvoyant algorithm. Similar

working with the PXA255 settings for this example results an improvement of 20.5% over the

inter-task algorithms and early execution algorithm incurs about 2.56% more energy over the

clairvoyant algorithm.

In order to realize the significant energy gains offered by the early execution technique in

a safe manner, we need to make sure that the early execution does not disturb any non-host

and non-guest tasks. This can be guaranteed by executing the guest task at the host task’s

priority during the early execution. This way other tasks are oblivious of the early execution

and no intermediate task can preempt the guest task leading to a possible indefinite blocking

of the host task; further, no higher priority task undergoes a priority inversion due to early

execution.

2.3.2 Overheads

Like any fine grained approach the proposed early execution algorithm also incurs over-

heads. We have measured the different overheads that would be incurred by the early execution

algorithm and calculated the energy associated with it. Our measurements have shown that

the overheads are very low both in terms of time and energy. In the following, we provide

these details.

AMD AMD PXA255 PXA255

Time # CPU Time # CPU

taken cycles taken cycles

α1 0.5 us 1000 6us 2400

α2 6 us 12000 32 us 12800

α3 10 us 20000 45 us 18000

α4 1.5 ms 3 ∗ 106 7.5 ms 3 ∗ 106

α5 1 ms 2 ∗ 106 5 ms 2 ∗ 106

Table 2.2 Overhead measurements (us: microseconds, ms: milliseconds)

Implementing the early execution algorithm involves two phases: an offline phase and an

online phase. The offline phase constructs the CFG of the application and adds the necessary



www.manaraa.com

21

system calls at appropriate points in the code. While the online phase simply responds to

these system calls and it does not require to maintain the task CFGs. The online phase is

basically carried out by the early execution scheduler and for each task it needs to know just two

parameters namely: time saved, ts and cycles left, cl. The first parameter ts is the time saved by

the task due to a shorter branch execution (required when the task acts as a host) and cl is the

remaining number of execution cycles left to complete the next basic branching block (required

when the task acts as a guest). The early execution scheduler will need to incorporate these

two new parameters into the operating system kernel’s task structure which will be updated

regularly by the task’s code. The offline phase calculates these parameters for each basic block

and adds the necessary function calls to the task’s code. The task parameters are updated

through the standard POSIX interfaces like pthread set function calls in RTLinuxPro [59] and

other Linux based real-time operating systems. Similar interfaces can be created for the above

two parameters as well (something like pthread set ts and pthread set cl).

We consider the different overheads involved in the online phase and ignore the offline

overheads. The following is a list of the various online overheads:

• Parameter update time (α1): The time taken to update a single task parameter which

is typically made by a pthread set function call in RTLinuxPro. This is also the time

incurred in changing a task’s priority, which is again a task parameter.

• Context switch time (α2): This is the time taken to switch between two tasks after the

scheduler has chosen the next task to run.

• Scheduling overhead (α3): This is the worst case time taken to choose the next task based

on one of the task parameters. Specifically, it is the time taken to scan the entire task

list.

• Frequency change (α4): This is the amount of time taken to change the operating fre-

quency. In our measurements, different transitions took different amounts of time and

α4 represents the largest of all.



www.manaraa.com

22

• Idle mode transition time (α5): The amount of time taken to enter and exit the processor

idle state.

We measured the above different overheads in RTLinuxPro on the AMD Opteron and Intel

XScale PXA255 processors using the standard measurement utility programs that are shipped

with the operating system. The system was running at fhigh by default with hundred real-time

runnable tasks (see table 2.2). Some of the overheads depend on the number of runnable tasks,

but in a typical real-time embedded system the number of tasks is much lesser than hundred.

Therefore, the above measurements serve as the upper bounds for the typical case.

The working of the above example considering the overheads is shown in figure 2.3. The

different overheads (a1 to a5) can be calculated as follows:

• a1 = α1/1800 = 0.56 us, this is incurred when B11 updates its cl.

• a2 = (α3+α1+α2+α1)/1800 = 18.89 us. The first term is incurred in choosing the guest

task, the second term is incurred in changing the guest task’s priority to host priority.

The third is incurred in switching from the host task to guest task and the final term is

incurred by the guest task in updating its cl. Clearly, a2 and B21 can be accommodated

in time saved 2.7 ms.

• a3 = (α1 + α3 + α2 + α1 + α4)/1800 = 1.69 ms. The first term represents the time

incurred in changing back the guest task’s priority to its original value. The second and

third terms is incurred in choosing the next task (T1) to run and switching to it. The

fourth term represents the term incurred in updating the new task’s cl. The final term

represents the time incurred in changing the operating frequency.

• a4 = 2 ∗ α1/1000 = 2 us, this is incurred when B22 updates its cl and when task T1

updates its cl for the next instance as 10 ∗ 106. This is done at the end of each task

instance to allow the early execution scheduler to consider its next instance for an early

execution as and when it arrives and is runnable.

• a5 = (α1 + α5)/1000 = 2.001 ms, the first term represents the time incurred when task



www.manaraa.com

23

T2 updates its cl as 4∗106 for its next instance and the second represents the time taken

to enter and exit the idle state.

The total overhead is 3.7 ms (= a1 + a2 + a3 + a4 + a5) and the energy incurred is 157 mJ

(= (a1 + a2 + a3) ∗ 66 + (a4 + a5) ∗ 22). The total energy consumption of the early execution

schedule with the overheads is 2892.562 mJ (obtained as, 7.78∗66+(108.78−7.78)∗22+(112.5−

108.78−3.7)∗4.1+157) and the energy savings over inter-task schedule is about 34.49%. Now,

the early execution algorithm incurs about 9.68% more energy than the clairvoyant algorithm.

With the PXA255 settings the total overhead is 17.72 ms and it incurs 4.91 mJ of energy.

The early execution schedule now gives an improvement of 18.73% over the inter-task schedule

and incurs about 4.65% more energy than the clairvoyant algorithm.

2.3.3 The Early execution criterion

In order to guarantee the real-time constraints while performing early execution and ac-

commodate the associated overheads, we have developed the following three tests that need

to be verified at different stages of implementation. The total early execution overheads in-

volve two components namely, the time incurred in updating the task’s parameters and the

time incurred in running the early execution scheduler which uses these updated parameters.

The first component is always encountered while the second is incurred only when the early

execution scheduler is invoked. Therefore, it is possible to estimate the worst case value of

the first component for each task and test if this overhead can be accommodated without

violating deadlines offline. Once this is guaranteed, the worst case estimate of the second com-

ponent needs to be accommodated within the dynamic slack generated due to shorter branch

execution.

1. Offline schedulability test: This test is performed offline and checks for the task

parameter update overheads. Every basic block updates both the ts and cl parameters

in the worst case. Further, at the end of each task instance the cl for the next instance is

notified so that early execution can be performed when the task is just ready. If a task Ti

has bi number of basic blocks in the path with largest number of blocks, then overhead



www.manaraa.com

24

Figure 2.4 Early execution - schedulability tests

due to these updates is bi ∗ 2 ∗α1 + α1. For a given task set with n tasks, the worst-case

computation time of each task Ti should now be considered as Ci + (2bi + 1)α1 and the

corresponding schedulability needs to be re-verified with the updated computation times.

In case of the look-ahead EDF, the schedulability test now becomes:

n∑

i=0

(
Ci + (2bi + 1)α1

Pi

) ≤ 1 (2.2)

2. Online overhead test: This online test checks for the second component of overheads

which include cost/time of the early execution scheduler (say, φ) and the time incurred

in making a change to the new frequency (α4). Therefore, before invoking the early

execution scheduler on a shorter branch execution, it is mandatory to verify that the

dynamic slack generated is greater than ((φ + α4)/fop). Further, early execution algo-

rithm is invoked only when the current operating frequency is greater than the minimum

processor frequency. Mathematically,

ts >
(φ + α4)

fop

(2.3)

fop > flow (2.4)

where fop is the current operating frequency. We derive a concrete expression for φ in

the next section.

3. Online early execution test: The above two tests check for the overheads. Figure

2.4, shows how these tests are used at different stages. Now, within the scheduler, we



www.manaraa.com

25

need to verify if the basic block of the guest task can be accommodated in the leftover

dynamic slack (ts− (φ+α4)/fop) generated due to the shorter branch. More specifically,

we need to verify the following condition before choosing any task as an eligible guest

task in order to guarantee the deadlines.

(ts −
(φ + α4)

fop

) ≥
cl

fop

(2.5)

2.4 The generic early execution algorithm

We now present our generic early execution algorithm which reduces the energy consump-

tion by performing safe early executions while meeting all the task deadlines. The generic early

execution scheduler consists of two modules namely, Block Level Slack Manager (BLSM) and

Task Level Slack Manager (TLSM) built over an inter-task DVS algorithm.

Input: time saved due to shorter branch execution, ts

Output: new operating frequency, fnew

ts = ts − (φ + α4)/fop1

while ts > 0 do2

Pick the next task (Tj)from the ready queue;3

If((Tj .cl/fop) ≤ ts)4

Add (Tj ,Tj .cl) to the guest list;5

ts = ts − (Tj .cl/fop);6

If(ready queue has no more tasks left) break;7

end8

foreach task Tj in the guest list do9

Execute Tj at the host’s priority for Tj.cl/fop amount of time at frequency = fop;10

end11

Update the average utilization (Uavg) based on the early executions performed;12

Update the appropriate inter-task algorithm parameters;13

Set fnew = TLSM(Uavg);14

return fnew15

Algorithm 1: Block Level Slack Manager (BLSM)

Whenever a (host) task executes a basic branch block, it informs the amount of time saved

to the BLSM. The pseudocode of the BLSM is shown in Algorithm 1 and it works as follows.

In step 1, the worst case scheduler overhead and the frequency change overhead are deducted

from ts. In step 2, the BLSM scans through the ready queue and picks the next task (Tj).



www.manaraa.com

26

Input: current average utilization, Uavg

Output: new operating frequency, fnew

Calculate the Smax as per the underlying inter-task DVS algorithm;1

Calculate fmin, the operating frequency at which all the Smax is used.;2

Set fnew = Max(fmin, Uavg);3

Set fnew to the smallest discrete frequency level that is greater than fnew;4

return fnew;5

Algorithm 2: Task Level Slack Manager (TLSM)

In step 3, the BLSM checks if the task Tj passes the online early execution test outlined in

the previous section. If the task Tj passes, the BLSM adds it to the guest list and deducts

an appropriate amount from the ts. In steps 9 to 10, the BLSM executes each of the guest

tasks for an appropriate amount of time at the host task’s priority. The time incurred for the

steps 1 to 9 can be approximated to two scans of the entire task list which is 2α3 and step

10 includes the context switch time incurred in performing the early executions. In the worst

case, all n − 1 tasks can be eligible guest tasks in which results in a cost of (n − 1)α2 for step

10. After all early executions, the scheduler performs a context switch back to the host task or

any higher priority task, therefore, the total time incurred in all the context switches is nα2.

In addition, each context switch involves increasing the guest task’s priority to that of the host

task and later back to its own. Hence, these priority changes incur a time of n ∗ 2α1.

The BLSM updates the average utilization and the inter-task parameters in steps 12 and 13

respectively. The inter-task parameters for example, in the case of Look-ahead EDF, include

the rem cci of both the host and guest tasks. In case of AGR scheme the α-queue is updated

with the actual execution times of the host and guest tasks. Therefore, the time incurred by

step 13 can be approximated to 2α1 and the worst case time of step 12 is α3. Finally in step

14, the BLSM obtains the operating frequency by invoking the TLSM and returns the same.

The detailed pseudocode of the TLSM is presented in Algorithm 2 and it works as follows.

In step 1, the TLSM calculates the maximum slack that is currently available as per the

underlying inter-task DVS algorithm. In the worst case, a typical inter-task algorithm scans

through the whole task list, hence this step costs about α3. In step 2, the lowest operating

frequency at which the whole of the maximum slack is utilized is obtained. In step 3, the



www.manaraa.com

27

operating frequency is chosen as the maximum of the average utilization and the minimum

frequency. Finally, in step 4, the chosen operating frequency is rounded to the nearest discrete

frequency level supported by the processor. We ignore the costs of steps 2,3 and 4 as they are

only a few instructions. It is important to note that the TLSM is invoked by the BLSM after

every early execution and it is also invoked after every task completion in a regular inter-task

manner.

The worst case total cost of a single BLSM invocation is given by:

φ = 4α3 + n(α2 + 2 ∗ α1) + 2α1 (2.6)

This corresponds to 0.7 ms at 2000MHz and 4.6 ms at 400MHz on AMD Opteron and

Intel XScale PXA255 respectively. A typical basic block of size 10 ∗ 106 execution cycles [20]

takes about 5 ms and 25 ms on AMD Opteron and PXA255 respectively. Therefore a call to

the early execution algorithm would cost about 1
5 th of basic block time at the most. The

asymptotic run-time of both the TLSM and BLSM algorithms is ©(n).

2.4.1 Schedulability Guarantees

The early execution scheduler preserves all the deadline guarantees provided by the un-

derlying inter-task algorithm. In the following, we provide an informal proof for the above

statement.

The early execution technique guides the underlying inter-task algorithm by showing the

slack in the schedule at an earlier point of time. Without the early execution, inter-task

algorithms would see the same slack at a later point, possibly when the slack cannot be utilized.

This early information is achieved by executing a basic branch block of the guest task in the

time slice of the host task. The guest task is executed at the host task’s priority during the

early execution. In this process, the rest of the tasks are left unaffected. As a result, we can

consider an early execution to be modifying the CFGs (and the actual execution times) of the

guest and host tasks.

Consider an early execution scenario with a host task (Ti) and a guest task (Tj) whose

CFGs are shown in figure 2.5. Blocks B2i, B3i, B2j , B3j here represent the whole sub-trees



www.manaraa.com

28

Figure 2.5 Early execution - effective CFG modifications

below them. In the degenerate case, they are simply basic blocks. The paths: (B1i, B3i)

and (B1j , B3j) represent the corresponding worst-case (and largest) paths i.e, B3i > B2i and

B3j > B2j.

During the early execution, effectively, the block B1j is transferred from the guest task Tj

to Ti as shown in figure 2.5. Further, the overheads (φ + α4) are accounted by including it in

the transferred block. Such a CFG transformation will preserve the schedulability guarantees

provided by the underlying inter-task algorithm as long as it does not increase the worst-case

execution times of the host task. Clearly, the early execution scheme does not increase worst

computation of any task. This because the early execution is performed only if (B3i −B2i) >

(B1j + (φ + α4)) as ensured by the online early execution test. Further, the early execution

algorithm always operates at a frequency greater than or equal to the minimum frequency

depicted by the underlying inter-task algorithm (step 3 of TLSM). Consequently, the early

execution algorithm preserves the deadline guarantees provided by the underlying inter-task

algorithm.

2.5 The conservative early execution (CEE) algorithm

Although very rare in practice, sometimes an early execution can result in higher energy

consumption than otherwise. We call such early executions as negative early executions.



www.manaraa.com

29

In this section, we demonstrate the negative early executions with an illustrative example and

extend the generic early execution algorithm presented above to avoid such negative early

executions. Consider two simple tasks T1 & T2 with the following parameters:

• R1 = 0, WC1 = 100 ∗ 106, P1 = D1 = 225 ∗ 106

• R2 = 0, WC2 = 100 ∗ 106, P2 = D2 = 225 ∗ 106

Using the AMD Opteron power specifications, the absolute period and deadline times for

the above tasks are: P1 = D1 = P2 = D2 = (225 ∗ 106/2000MHz) = 112.5ms. Let the

CFGs of T1 & T2 be as shown in figure 2.2 with the following modified basic block sizes:

B11 = 5 ∗ 106, B12 = 5 ∗ 106, B13 = 95 ∗ 106, B21 = 50 ∗ 106, B22 = 45 ∗ 106 and B23 = 50 ∗ 106.

The inter-task and the early execution schedules are shown in figure 2.6. At time 2.78, the

above early generic early execution algorithm executes the branching block B21 of task T2

using the time saved (50 ms) by the task T1 due to shorter branch execution. The amounts of

energy consumption incurred by the early execution and the inter-task schedules are as follows:

Eearly = 30.58∗66+50∗22+31.92∗4.1 = 3249.152W and Einter = 5.56∗66+95∗22+11.94∗4.1 =

2505.914W . Clearly, Eearly > Einter.

Figure 2.6 Illustrative example: different schedules



www.manaraa.com

30

The reason behind the above negative early execution is as follows: In any early execu-

tion the branching block of the guest task is generally executed in a more non-deterministic

environment and hence at a higher operating frequency than otherwise. For example, block

B21 of task T2 is executed at time 2.78 at a frequency of 1800MHz, on the other hand it is

executed at a frequency of 1000MHz otherwise, as shown in the inter-task schedule. There-

fore, it is very important that the decision block is small enough to avoid the negative early

executions. Furthermore, the amount of reduction in the average utilization that the early ex-

ecution brings also dictates the benefits of the early execution. In this example, the best path

execution length is not much different from the worst case execution path (i.e. the difference

is only B23 − B22 = 5 ∗ 106 cycles). Therefore, due to the above factors in this example the

eligible early execution manifests as a negative early execution.

Theoretically one can calculate the net energy gains of an early execution and avoid it if

the energy gain is negative. The energy gain obtained by an early execution is given by:

Egain =
∑

∀i,j

(
Bij

fxij
∗ Pxij −

Bij

fyij
∗ Pyij) − (

φ + α4

fop
) ∗ Pop (2.7)

Where fyij is the operating frequency of Bij if the early execution is performed and fxij is

the operating frequency without the early execution. The terms Pxij and Pyij represent the

corresponding power consumption values. The last term above represents the energy incurred

by the early execution overheads.

Calculating the Egain before performing an early execution according to the above formula

however, is not practical in the absence of future knowledge as we cannot determine all the

basic blocks that execute and their corresponding operating frequencies. Therefore, in this

chapter, we make a conservative estimate of the Egain as follows:

Ecgain = (
Crem

fop
∗ Pop −

Crem

fy
∗ Py) + (

cl

favg
∗ Pavg −

cl

fop
∗ Pop) (2.8)

Where Crem is the remaining cycles of the host task’s best execution path, cl is the number

of cycles that the guest task needs to execute in order to complete its next branch block, fop

is the current operating frequency and favg is the smallest frequency which is greater than



www.manaraa.com

31

the current average utilization. Here fy, the operating frequency after the early execution is

approximated as the smallest frequency which is greater than the updated average utilization

assuming the average case path in the guest task will execute.

The first term in the above equation represents the amount of energy gained due to early

execution while the second term represents the energy lost in executing the branching block

(as it is executed earlier and at a higher frequency typically) of the guest task. The above esti-

mate of the energy gains of an early execution is conservative in the sense that it considers the

energy savings of the host task alone. On the other hand, the early execution can potentially

reduce the operating frequency of a lot more tasks. In order to avoid the negative early execu-

tions associated with the average case execution path, we augment the online early execution

test with the following additional condition: Ecgain > 0. We call this variation of the early

execution algorithm as the conservative early execution (CEE) algorithm. Since the generic

early execution algorithm does not perform any kind of check for negative early executions we

refer to it as aggressive early execution (AEE) algorithm in the rest of the chapter.

2.6 Simulation Studies

We performed simulation studies to compare the relative performance of the following

algorithms: (1) Look-ahead EDF, (2) Intra Look-ahead EDF (Look-ahead EDF applied at

the basic block level) (3) AEE (4) CEE and (5) Clairvoyant algorithm, the theoretical lower

bound of the energy consumption. Both the AEE and CEE algorithms assume Look-ahead

EDF as the underlying inter-task algorithm. The performance metric for all our simulations is

the normalized energy consumption i.e. the total energy consumption normalized with respect

to the DVS unaware scheduler. We conducted three sets of simulations each with a different

input task set. We used the following real applications in the first two simulation sets: sensor

application and video phone application. In the third set, we used randomly generated task

sets.

Figure 2.7.(a) outlines our general simulation methodology. The simulation setup consists

of a discrete event simulator which accepts task set information, processor DVS settings (table



www.manaraa.com

32

2.1) and the different overheads (table 2.2) as input. It evaluates all the above schemes and

outputs the corresponding normalized energy consumption values as shown in the figure. The

same simulator is used across the three simulation sets. However, the task set information

is generated in a different manner for each simulation set. In the following, we present these

details along with the results.

Figure 2.7 Simulation setup

2.6.1 Sensor Application

Application Description: Computational demands on the individual sensor nodes are grad-

ually increasing particularly due to the rising security concerns [22, 23]. Sensor nodes are now

expected to perform computationally expensive message encryptions and decryptions [23]. In

the following, we consider a representative sensor application involving a set of periodic tasks

running on a single sensor node. Each task (hereafter referred as sense-filter-send task) peri-

odically obtains a new sample of a specific phenomenon and determines if the obtained sample

is significantly different from the previously communicated sample. If the sample is new, it is

encrypted and communicated via the wireless medium to the appropriate destination; other-

wise, the sample is ignored. In this chapter, we focus on the computational workloads of each



www.manaraa.com

33

task and ignore the communication aspects.

Workload details: The CFG of a single sense-filter-send task is shown in figure 2.7.(b). The

block B1 represents the initial processing on the obtained sample and the block B2 denotes

the number of computation cycles involved in performing the message encryption. Finally,

the block B3 represents the computations involved in things like clearing the message buffer,

updating the latest communicated message, etc. In this chapter, we assumed B1 = 50, B2 = 106

and B3 = 10 cycles. We obtained the message encryption time in CPU cycles (i.e, size of B2)

from [23]. In the CFG, the path (B1, B3) denotes the case where the new sample is not very

different from the previously communicated sample in which case the number of CPU execution

cycles to very few. We refer to this path as the best path and the probability of execution for

this path depends on the specific phenomenon and the overall application. We considered five

periodic tasks whose deadline was chosen equal to their period. In practice each sensor node

is capable of sensing as high as ten different phenomenon simultaneously.

Simulation parameters: In this simulation set, we used Intel PXA255 processor settings.

Further, we varied the following two parameters: system utilization (U) and the best path

probabilities (Pb). A specific value of system utilization is achieved by choosing the task

periods accordingly. The actual execution path for each task is chosen independently and

uniformly at random with a probability Pb.

Effect of utilization (U): Figure 2.8.(a) compares the normalized energy consumption of the

above algorithms with varying worst-case utilization. With the increasing worst-case utiliza-

tion, the individual task periods are chosen small as a result the room for performing DVS is

reduced. Consequently, the energy consumption of all the algorithms increase with increasing

utilization. Throughout the range, both the early execution algorithms perform better than

the basic underlying look-ahead EDF. At lower worst-case utilization all the schemes could

operate at the minimum operating voltage. As the worst-case utilization increases, both vari-

ations of look-ahead EDF operate at higher processor frequencies while the early execution

algorithms perform better by gaining a better idea of the exact work-load with the help of

early executions. AEE shows an improvement of about 16% and 21% over look-ahead EDF at



www.manaraa.com

34

U = 0.80 and U = 0.90 respectively. Throughout, AEE incurs as less as 2% or less additional

energy than the clairvoyant algorithm.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5  0.6  0.7  0.8  0.9  1

N
or

m
al

iz
ed

 e
ne

rg
y 

co
ns

um
pt

io
n

Worst case utilization

Effect of utilization

LA-EDF
Intra LA-EDF

AEE
CEE

Clairvoyant

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5  0.55  0.6  0.65  0.7  0.75  0.8  0.85  0.9

N
or

m
al

iz
ed

 e
ne

rg
y 

co
ns

um
pt

io
n

Best path probability

Effect of best path probability

LA-EDF
Intra LA-EDF

AEE
CEE

Clairvoyant

Figure 2.8 (a) Effect of utilization at Pb = 0.90 (b) Effect of Pb at

U = 0.80

Effect of best path probability (Pb): Figure 2.8.(b) shows the normalized energy consumption of

the above schemes with varying best case execution path probability. Higher the probability,

higher is the number of instances which take the best case path in the corresponding CFGs. As

we increase Pb, the amount of computation performed by each task decreases on an average.

Therefore, the energy consumption of all the algorithms decreases with increasing probability.

Also with increasing probability, the savings achieved by the early execution algorithms increase

because each early execution will result in lowering the operating frequency with a higher

likelihood. At Pb = 0.70, AEE shows an improvement of about 20% and 18% over look-ahead

EDF and Intra-look-ahead EDF, respectively. Further, AEE incurs about 5% more energy

than the clairvoyant algorithm at Pb = 0.70.

2.6.2 Video Phone Application

Application Description: In this simulation set, we considered a video phone application

that consists of four periodic tasks as shown in table 2.3. The four tasks together perform



www.manaraa.com

35

video, audio decoding and encoding to obtain the functionality of a video phone. We would

like to note that a similar application has been used for performance evaluation in [20]. The

individual tasks are chosen from media-2 benchmark program suite [24].

Workload details and simulation parameters: For each task, starting with its source code

we obtained its control flow graph, worst-case execution time and individual branch probabil-

ities. Figure 2.7.(c) outlines the different steps we followed in obtaining this information. The

CFGs are obtained using the GCC compiler with appropriate options as shown in the figure

and later each basic block size is obtained by counting the number of assembly instructions

that constitute that block. For simplicity, we assumed each instruction takes one CPU cycle.

This flow is shown as the left branch in figure 2.7.(c).

Based on the CFG generated, we have noticed that at the basic block sizes varied signif-

icantly. In order to avoid excessive overheads, we have enabled early execution code only at

the branches where significant slack would be generated (that is where the best and worst case

branches differ in their sizes significantly). Specifically, early execution is performed only when

the slack generated by the host task is at least twice as the early execution overheads.

Further for each task, we obtained the individual branch probabilities in the CFG using

GNU profiler. The source code is compiled with required instrumentation and later run for

different inputs to obtain the individual branch probabilities. For those branches where we

could not determine the probabilities, we assumed all unknown branches are equi-probable.

This flow is shown as the right branch in figure 2.7.(c). Table 2.3 shows both the WCET

and BCET (best-case execution time) values at 400MHz for different tasks. The WCET and

BCET values are estimated by calculating the execution times for longest and most probable

paths respectively in the corresponding CFGs. In the following, we present our results with the

video phone application. We varied the system utilization and studied the relative performance

of different algorithms.

Effect of Utilization: The plots shown in figure 2.9 compare the normalized energy consumption

of the above algorithms with varying worst-case utilization. With the increasing worst-case

utilization, the individual task periods are chosen small as a result the room for performing DVS



www.manaraa.com

36

MPEG4 MPEG4 GSM GSM

video audio speech speech

encoding decoding encoding decoding

WCET (msec) 55.7 10.86 2.83 1.43

ACET (msec) 14.50 1.62 1.97 0.59

Table 2.3 Estimated execution times @ 400 MHz

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

N
or

m
al

iz
ed

 e
ne

rg
y 

co
ns

um
pt

io
n

Worst case utilization

Effect of utilization

LA-EDF
Intra LA-EDF

AEE
CEE

Clairvoyant

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.4  0.5  0.6  0.7  0.8  0.9  1

N
or

m
al

iz
ed

 e
ne

rg
y 

co
ns

um
pt

io
n

Worst case utilization

Effect of utilization

LA-EDF
Intra LA-EDF

AEE
CEE

Clairvoyant

Figure 2.9 Video Phone, DVS settings: (a) Intel PXA255 (b) AMD

Opteron

is reduced. Consequently, the energy consumption of all the algorithms increase with increasing

utilization. Throughout the range, both the early execution algorithms perform better than the

basic underlying look-ahead EDF. At lower worst-case utilization all the schemes could operate

at the minimum operating voltage. As the worst-case utilization increases, both variations of

look-ahead EDF operate at higher processor frequencies while the early execution algorithms

perform better by gaining a better idea of the exact work-load with the help of early executions.

For PXA255 DVS settings (see figure 2.9.(a)), at U = 0.60 AEE shows an improvement of

11% over Look-ahead EDF and about 9% over Intra Look-ahead EDF scheme. At U = 0.90

AEE shows an improvement of 26% and 22% over Look-ahead EDF and Intra Look-ahead

EDF schemes respectively. Similarly, for AMD Opteron (see figure 2.9.(b)), at U = 0.60 AEE



www.manaraa.com

37

shows an improvement of 21% over Look-ahead EDF and about 8% over Intra Look-ahead

EDF scheme. At U = 0.90 AEE shows an improvement of 34% and 20% over Look-ahead

EDF and Intra Look-ahead EDF schemes respectively.

2.6.3 Random Task Sets

In this simulation set, we have studied the performance of the above algorithms on randomly

generated task sets. For each task, the number of basic blocks per task is chosen randomly from

[50, 100]. The basic block size (number of CPU execution cycles) is chosen from [106, 107]. For

each simulation run, we generated 30 tasks whose period is randomly chosen from the interval

[100, 4000]. We randomly generated the control flow graphs for each of the 30 tasks with the

appropriate worst-case and best-case execution paths.

We studied the effect of the following parameters: worst case utilization (U), ratio of the

average case execution time to worst case execution time (ACET/WCET) and probability of

the best case execution path (Pr). The default values for the above parameters are chosen as

: U = 0.98, ACET/WCET = 0.5, Pr = 0.8.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5  0.55  0.6  0.65  0.7  0.75  0.8  0.85  0.9  0.95

N
or

m
al

iz
ed

 e
ne

rg
y 

co
ns

um
pt

io
n

Worst case utilization

Effect of utilization (AMD Opteron)

LA-EDF
Intra LA-EDF

AEE
CEE

Clairvoyant

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.5  0.55  0.6  0.65  0.7  0.75  0.8  0.85  0.9  0.95

N
or

m
al

iz
ed

 e
ne

rg
y 

co
ns

um
pt

io
n

Worst case utilization

Effect of utilization (Intel PXA 255)

LA-EDF
Intra LA-EDF

AEE
CEE

Clairvoyant

Figure 2.10 Effect of utilization

Effect of Utilization: The plots shown in figure 2.10 compare the normalized energy consump-

tion of the above algorithms with varying worst-case utilization. With the increasing worst-case



www.manaraa.com

38

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

N
or

m
al

iz
ed

 e
ne

rg
y 

co
ns

um
pt

io
n

ACET/WCET

Effect of ACET/WCET (AMD Opteron)

Look-ahead EDF
Intra-LA-EDF

AEE
CEE

Clairvoyant

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

N
or

m
al

iz
ed

 e
ne

rg
y 

co
ns

um
pt

io
n

ACET/WCET

Effect of ACET/WCET (Intel PXA255)

Look-ahead EDF
Intra-LA-EDF

AEE
CEE

Clairvoyant

Figure 2.11 Effect of ACET/WCET

utilization, for a given ACET/WCET, the actual computation performed by each task also

increases. Consequently, the energy consumption of all the schemes also increase. Throughout

the range, both the early execution algorithms perform better than the basic underlying look-

ahead EDF. At lower worst-case utilization all the schemes could operate at the minimum

operating voltage. As the worst-case utilization increases, the look-ahead EDF operates at

higher operating frequencies while the early execution algorithms perform better by gaining

a better idea of the exact work-load with the help of early executions. At U = 0.98, the

AEE shows an improvement of 24% (10%, for PXA255) over the look-ahead EDF and incurs

about 6% (2% for PXA255) more energy than the clairvoyant algorithm. There is almost no

difference between CEE and AEE indicating there are very few negative early executions for

the chosen parameter values.

Effect of ACET/WCET: Figure 2.11 shows the normalized energy consumption of the above

schemes with varying ACET/WCET. With increasing ACET/WCET, for a given worst case

utilization, the amount of actual computation performed by each task also increases. Conse-

quently, the energy consumption of all the algorithms also increase with increasing ACET/WCET.

Throughout the range, the early execution algorithms perform significantly better than the un-



www.manaraa.com

39

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5  0.6  0.7  0.8  0.9  1

N
or

m
al

iz
ed

 e
ne

rg
y 

co
ns

um
pt

io
n

Probability of the most probable path

Effect of probability (AMD Opteron)

LA-EDF
Intra-LA-EDF

AEE
CEE

Clairvoyant

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.5  0.6  0.7  0.8  0.9  1

N
or

m
al

iz
ed

 e
ne

rg
y 

co
ns

um
pt

io
n

Probability of the most probable path

Effect of probability (Intel PXA 255)

LA-EDF
Intra-LA-EDF

AEE
CEE

Clairvoyant

Figure 2.12 Effect of the best path probability

derlying look-ahead EDF algorithm. At lower ACET/WCET ratio, there are a good number

of early executions performed and both the early execution algorithms perform better than

the underlying look-ahead EDF. Further, the lot of room created by the low ACET/WCET

results in a few negative early executions and CEE shows a slight improvement over the AEE.

At higher ACET/WCET, there is relatively lesser room for early executions consequently both

AEE and CEE show decreasing improvements over the look-ahead EDF. AEE shows an im-

provement of 17% (7.5% for PXA255) and 6% (3% for PXA255) at ACET/WCET = 0.5 and

ACET/WCET = 0.9 respectively.

Effect of best path probability: Figure 2.12 shows the normalized energy consumption of the

above schemes with varying best case execution path probability. Higher the probability, higher

is the number of instances which take the best case path in the corresponding CFGs. For a

given ACET/WCET (less than one), as we increase the probability the amount of computation

performed by each task decreases on an average. Therefore, the energy consumption of all the

algorithms decreases with increasing probability. Also with increasing probability, the savings

achieved by the early execution algorithms increase because each early execution will result

in lowering the operating frequency with a higher likelihood. AEE shows an improvement of

35% (13.5% for PXA255) over the look-ahead EDF and incurs about 7.5% (1.8% for PXA255)



www.manaraa.com

40

more energy over the clairvoyant algorithm at probability 0.9.

2.7 Discussion

In this chapter, we proposed a novel generic DVS technique for energy-aware scheduling of

periodic tasks that can be adapted to many of the existing inter-task algorithms. By utilizing

the available slack for early execution of the basic branch blocks of the other ready tasks, the

algorithm attains a more accurate picture of the actual workload than the underlying inter-task

algorithm and adapts accordingly. We have measured the different overheads that would be

incurred by the proposed algorithm on AMD Opteron and Intel XScale PXA255 processors

in RTLinuxPro and incorporated them in our simulations. We have evaluated the proposed

algorithms for a variety of scenarios by conducting three sets of simulations. In the first two

sets we considered real applications namely, a sensor application and a video phone application.

In the third set, we considered randomly generated task sets. Our results show that the early

execution technique yields significant energy gains over the look-ahead EDF. In our future

work, we plan to extend the proposed early execution concepts to periodic task system with

shared resources. The early execution principle in such a system requires taking into account

not only the scheduler’s operation, but also the rules of the resource access control protocol.



www.manaraa.com

41

CHAPTER 3. Energy management in communication system using

dynamic modulation scaling

In this chapter, we address the communication energy management problem by employing

Dynamic Modulation Scaling (DMS) as the underlying energy management mechanism.

Timely and reliable message delivery is of paramount importance in a variety of applica-

tion domains involving battery-driven embedded devices that communicate over the wireless

network. Providing real-time and reliability guarantees for these applications is extremely

challenging due to the severe energy limitations experienced by the individual devices which

are further overburdened by the time-varying nature of the wireless medium. Trying to pro-

vide such stringent guarantees can demand exceedingly high energy resources from different

nodes in the network. Therefore, energy management is a primary concern in the design and

operation of these time-sensitive applications.

Current state-of-the art embedded devices support a variety of power management tech-

niques which can be exploited by the higher layer protocols for effective energy management.

These techniques include: sleep-wakeup [60, 61], power adaptation [62, 63] and performance

scaling [64]. In this chapter we focus on performance scaling.

Performance scaling refers to the technique of lowering the transmission power and trans-

mitting the packet for a longer period of time to reduce the transmission energy consumption.

This technique allows to tradeoff transmission latency for communication energy savings. Such

an energy-time tradeoff can be achieved either by varying the modulation level or error cor-

recting codes or both simultaneously in a message transmission. These specific variations are

termed as Dynamic Modulation Scaling (DMS), Dynamic Code Scaling (DCS) and Dynamic

Modulation-Code Scaling (DMCS) respectively [65]. Although the specific variables or control



www.manaraa.com

42

knobs might vary across the three techniques, the fundamental tradeoffs they offer are similar.

In the rest of the chapter, we work with the DMS technique.

3.1 Related work and motivation

Several algorithms and protocols have been developed to exploit the energy-time tradeoffs

presented by different performance scaling techniques to achieve impressive energy gains for a

variety of network setups. The different performance-scaling based scheduling algorithms that

are proposed in the literature can be categorized as follows based on their network model.

• Single Sender, Single Receiver: The network setup involving a single sender and receiver

has been considered in [64, 66, 67]. In [66], the problem of scheduling a set of finite

(non-periodic) messages with a common deadline is addressed where the objective is to

minimize the energy consumption of the sender node. An optimal algorithm has been

presented along with an online scheduling algorithm. Recently, the work presented in

[67] addressed a similar problem with individual packet deadlines rather than a common

deadline for all packets. For this model, the authors presented an optimal offline schedul-

ing algorithm which is further analyzed and extended in [64]. The problem of scheduling

a set of periodic messages has been addressed in [68] where the objective is to minimize

the total energy consumption of the schedule subject to individual message deadlines.

All the above proposed scheduling algorithms exploit the convex nature of the energy

function and are based on the assumption that energy consumption is a continuous and

monotonically decreasing function.

• Single Sender, Multiple Receivers: The down-link problem of scheduling a set of packets

with a common deadline from a single sender to multiple receivers is considered in [69].

The authors presented an optimal scheduling algorithm and further extended it to handle

the case where packets have individual deadlines. The work in [69] also addresses the

up-link scheduling problem involving multiple senders and a single receiver. Both offline

and online algorithms have been developed for this problem.



www.manaraa.com

43

Majority of the above mentioned work addresses different scheduling problems involving

either a single sender or a single receiver and the proposed solutions cannot be directly ex-

tended to scenarios involving multiple senders and receivers. In this chapter, we consider a

more general network model involving multiple senders and receivers which share the common

wireless medium.

Further, as mentioned earlier, most existing work is based on the assumption that the

transmission energy consumption is a continuous and monotonically decreasing function of

transmission latency. While the monotonicity does not completely hold in the presence of reli-

ability requirements as will be discussed in the subsequent sections, the continuity assumption

itself does not hold in practice. In practical systems only a few discrete performance levels

are allowed and each transmission can be performed at one of these levels. As a result the

solutions developed assuming a continuous energy function merely represent lower bounds to

the practical problem setups. Several chapters suggest a simple rounding mechanism (referred

as rounding algorithm in the rest of this chapter) where the continuous solutions are rounded

to the nearest discrete solution taking a conservative approach [70]. However, such round-

ing mechanism is not the optimal approach and hence cannot effectively reduce the energy

consumption particularly, when the number of discrete performance levels are few which is

typically the case in practical systems.

Unlike most of the existing work, our primary focus is on the discrete problem formulation

where only a few discrete modulation levels are allowed. We however, also address the con-

tinuous problem formulation considering energy consumption is a continuous function for two

important reasons. Firstly, obtaining an optimal solution for the discrete problem is difficult

as the problem in this case becomes NP-Hard. Therefore, we use the continuous problem

formulation to obtain lower and upper bounds for the optimal solution of the discrete prob-

lem. Secondly, we would like to compare the performance of the proposed heuristic scheduling

algorithms developed for the discrete problem with that of the rounding algorithm.

In addition to the above surveyed work, several other network level problems have been

addressed in conjunction with the DMS technique involving multiple senders and receivers [70].



www.manaraa.com

44

However, the specific problems they address are fundamentally different from the problem we

focus here.

The rest of the chapter is organized as follows: We present our system model in section 3.2.

In section 3.3 we present the problem statement along with the ILP formulation. We also prove

that the problem is NP-Hard. In section 3.4, we present the continuous problem formulation

along with its solution. In section 3.5, we present our heuristic scheduling algorithm. We

present our simulation results and conclusions in sections 3.6 and 3.7 respectively.

3.2 System Model

Network and Communication Model We consider a wireless network with v nodes which

share the common wireless medium that is accessed in an exclusive manner. As in most of the

existing work [70, 66, 69], we assume all nodes in the network are time synchronized.

As for the communication model, we assume that the modulation is Quadrature Amplitude

Modulation (QAM). The channels are modeled as frequency-flat Rayleigh fading. Let b denote

the modulation level i.e, number of bits per modulation constellation symbol. The constellation

size is calculated as M = 2b. Let Eb denote the received energy per bit, N0/2 denote the channel

noise power spectral density, Es denote the received energy per constellation symbol, d2
min the

minimum average squared Euclidean distance between two constellation symbol at the receiver,

and BER denote the bit error rate. We have the following relationships:

b = log2 M (3.1)

BER ≈ N0/d
2
min (3.2)

d2
min =

6

M − 1
Es (3.3)

Es = bEb (3.4)

The approximation in (3.2) is valid for high signal-to-noise ratio (SNR). Combining these, we

have

Eb ≈
2b − 1

6b
·

N0

BER
. (3.5)



www.manaraa.com

45

If a message contains L bits, then the total necessary received energy will be EL = L ·Eb. We

assume that the propagation loss follows a polynomial model: the power decays in the α-th

order of the distance:

Ets =

(
d

d0

)α

EL (3.6)

where Ets is the necessary transmitted energy to achieve a received energy of EL, d is the

distance between the transmitter and the receiver, d0 is a normalizing constant that depends

on the wavelength. Usually α is between 2 and 5. As a result, the total transmitted radio

energy can be expressed as

Ets =

(
d

d0

)α L(2b − 1)

6b
·

N0

BER
(3.7)

Further, the energy consumption of the electronic circuitry during a message transmission

and reception is given by, Etc = LCt

b
and Erc = LCr

b
respectively [65]. Here, Ct and Cr are

implementation dependent constants.

The time taken for transmitting a L-bit message in the shared wireless medium is given

by:

T =
L

Wb
(3.8)

Here, W denotes the bandwidth (symbols per second) of the channel in hertz and the

bandwidth in bits per second can be calculated as Wb. In the rest of the chapter, we assume

N0 = 4 ∗ 10−13, α = 2, Ct = 75nJ , Cr = 100nJ , L = 1024 and W = 1KHz as the default

values.

Message Reliability Model: Individual message reliabilities can be provided by either per-

forming retransmissions whenever necessary or by performing a single transmission with high

enough energy. Each one of the two options presents a different kind of a energy-time tradeoff

and they both require different scheduling approaches. In this chapter, we follow the single

transmission model. In such a model, the message reliability Relij defined as the probability

that the message mi reaches the destination without errors in a single transmission made at a

modulation level bj can be calculated as:

Relij = (1 − SER)
li
bj (3.9)



www.manaraa.com

46

where SER is the symbol-error-rate.

Scheduling Model: We use the earliest deadline first (EDF) [71] as the basic scheduling

mechanism. EDF prioritizes messages based on their deadline and schedules the message with

earliest deadline first. EDF is an optimal preemptive scheduling algorithm which can achieve

100% utilization while meeting all the deadlines. With EDF as the underlying scheduling

policy we follow a two stage (offline and online) preemptive scheduling model. In the offline

phase, the proposed scheduling algorithms assign modulation levels to individual messages

ensuring that the message set remains schedulable under EDF. In the online phase, an EDF

scheduler is employed which schedules the messages in the channel considering the modified

message latencies due to updated modulation levels. We assume that the input message set is

schedulable when each message is transmitted at the highest modulation level.

3.3 Problem Statement and ILP Formulation

Consider a set of periodic messages {m1,m2, ...,mn} where each message mi has a period

Ti equal to its deadline. Each message is associated with a unique source and destination node

pair in the network. Let {b1, b2....bN} denote the different possible modulation levels where

bi < bi+1. Each message mi is of size li bits. The objective of the scheduling problem is to

choose one of the N modulation levels for each message mi which minimizes the total energy

consumption while guaranteeing both the reliability and deadline constraints. To the best of

our knowledge, this problem has not been addressed in conjunction with the DMS technique.

For simplicity, we assume all instances of a given periodic message are transmitted at the

same modulation level. When dealing with periodic messages, the total energy consumption is

defined with respect to a time window, say [0, To], where To is an application specific parameter.

In the following, we present an ILP formulation for the above stated scheduling problem for a

given To.

3.3.1 ILP Formulation

We use the following symbols in the formulation.



www.manaraa.com

47

• n: number of input messages.

• N : number of discrete modulation levels.

• di: normalized source destination distance of mi.

• Ei,j : Energy consumption of a single transmission of message mi at a modulation level

bj . This includes the corresponding reception energy and it is calculated as,

Eij = d2
i

li(2
bj − 1)

6bj

·
N0

BER
+ Etc + Erc (3.10)

• R: minimum required reliability per message transmission that must be guaranteed.

• xi,j: binary integer variable which indicates if the modulation level bj is chosen for

message mi.

• Ti: period (equal to deadline) of message mi.

• δi,j : transmission latency of mi at modulation level bj and it is calculated as,

δi,j =
li

Wbj
(3.11)

The following formulation accepts a set of periodic messages and outputs a modulation

level for each message, with the objective of minimizing the overall energy consumption while

satisfying the deadline and reliability constraints:

Minimize n∑

i=1

N∑

j=0

⌈
To

Ti

⌉Eijxij (3.12)

Subject to:
n∑

i=1

∑N
j=0 δijxij

Ti
≤ 1 (3.13)

N∑

j=0

Relijxij ≥ R,∀i ∈ [1, n] (3.14)



www.manaraa.com

48

N∑

j=0

xij = 1,∀i ∈ [1, n] (3.15)

xij ∈ {0, 1},∀i, j (3.16)

The objective function in equation (3.12) represents the total energy consumed by the

message set in a time window of [0, To]. Here, the term ⌈To

Ti
⌉ denotes the number of instances

of message mi that arrive in the window [0, To]. The constraint in equation (3.13) ensures that

the message set remains schedulable under EDF. Equation (3.14) represents the reliability

constraint of the individual messages. The constraint in equation (3.15) ensures only one

modulation level is chosen for each message mi.

In the above problem formulation with single transmission reliability model, the reliability

constraint in equation 3.14 can be absorbed into the objective function. The following dis-

cussion presents the details. In order to guarantee the required reliability R for each message

transmitted at a modulation level bj , we should have Relij ≥ R. Further, an optimal energy

minimization strategy would limit Relij to R as providing higher reliability is not necessary and

would incur more energy. Therefore in the optimal solution we have, Relij = R. Consequently

from equation 3.9 we have, SER = 1 − R
bj

li . Further, assuming SER ≈ BER, the reliability

constraint in equation 3.14 can be accommodated into the problem statement as follows:

Eij = (di)
2 li(2

b
j − 1)

6bj

·
N0

1 − R
bj
li

+ Etc + Erc (3.17)

Since the reliability constraint is accounted into the objective function of the ILP formula-

tion, equation 3.14 can be ignored while using equation 3.17 for Eij.

3.3.2 Problem complexity

The scheduling problem with deadline and reliability constraints is NP-Hard. In this sec-

tion, we prove this by reducing the well-known Multiple choice knapsack problem [72] to the

problem at hand.



www.manaraa.com

49

Multiple Choice Knapsack Problem (MCKP): Given λ classes N1, ...Nλ of items to pack in

a knapsack of capacity c. Each item Oij ∈ Ni has a profit pij and weight wij . The problem is

to choose one item from each class such that the profit sum is maximized without having the

weight sum to exceed c.

The MCKP can be mathematically expressed as follows:

Maximize λ∑

i=1

∑

j∈Ni

pijxij

Subject to: λ∑

i=1

∑

j∈Ni

wijxij ≤ c

∑

j∈Ni

xij = 1

xij ∈ {0, 1}

Theorem: The message scheduling problem with deadline and reliability constraints is NP-

hard.

Proof: For the convenience of reduction, we rewrite the maximization objective of the MCKP

as the following minimization objective.
λ∑

i=1

∑

j∈Ni

(1 − pij)xij

Now, the MCKP has a one to one correspondence with the scheduling problem defined in

equations 3.12-3.16 and can be reduced to an instance where all messages have a single period

(and deadline) equal to To. Create a message mi for each of the classes Ni. For each object Oij

in Ni create a modulation level bj . Further, assign an energy consumption of Eij = (1 − pij)

and a latency δij = wij to message mi when transmitted at modulation level bj. Finally, set

T0 = c. This reduction takes O(
∑λ

i=1(| Ni |)k) amount of time which is clearly a polynomial

of the problem size. This implies that if the scheduling problem can be solved in polynomial

time, then the MCKP can also be solved in polynomial time. However, it is known that the

MCKP problem is NP-hard [72]. Therefore, the scheduling problem is also NP-hard.



www.manaraa.com

50

3.4 Continuous Problem Formulation

Although the ILP formulation presented in the previous section provides an optimal solu-

tion, often times solving an ILP can demand excessively high processing and memory resources

which makes it impractical to use for reasonably large message sets. Therefore, in this sec-

tion we derive upper and lower bounds on the energy consumption of the optimal solution

which can be obtained quickly. The basic idea is to formulate the scheduling problem as a

convex optimization problem assuming the modulation levels of the individual messages can

be varied continuously. A solution to this problem can be obtained in polynomial time and

this represents a lower bound on the optimal solution of the original problem with discrete

modulation levels. In the following, we drop the expressions Etc and Erc from discussion for

better readability. Please note that the analysis however can be carried out with them in place.

The continuous case of the scheduling problem can be written as,

Minimize:

f(~b) =

n∑

i=1

⌈
To

Ti
⌉(

2bi − 1

bi

N0d
2
i

(1 − R
bi
L )

)
li
6

(3.18)

Subject to:

g(~b) =
n∑

i=1

L

WTi

1

bi

≤ 1 (3.19)

bmin ≤ bi,∀i ∈ [1, n] (3.20)

bi ≤ bmax,∀i ∈ [1, n] (3.21)

Here, bi is the variable denoting modulation level of message mi. The problem is to de-

termine the values for each bi with the objective of minimizing the total energy consumption

while meeting all the deadlines. Where bi varies continuously in the range [bmin, bmax]. We

define the following symbols, ki = ⌈To

Ti
⌉N0d

2
i

li
6 and k′

i = L
WTi

.



www.manaraa.com

51

Now, the objective function can be written as, f(~b) =
∑n

i=1 fi and the constraint can be

written as g(~b) =
∑n

i=1 gi < 1 where fi = ki(
2bi−1

bi

1

(1−R

bj
li )

) and gi =
k′

i

bi
. Figure 3.1 plots fi as

a function of bi. Clearly, fi is a strict convex function of bi. Therefore, f(~b) which is sum of

n identical strict convex functions is also a strict convex function. Further, each gi is a strict

convex function of bi as ∂2gi

∂b2i
> 0. Therefore, g(~b) is also a strict convex function. This makes

the problem defined in equations 3.18 to 3.20 a convex optimization problem which can be

solved using standard Lagrangian multipliers technique.

 5

 6

 7

 8

 9

 10

 1 1.5 2 2.5 3 3.5 4 4.5 5

E
ne

rg
y 

co
ns

um
pt

io
n 

(n
J)

Modulation level

Total energy
Transmission energy

Figure 3.1 Transmission energy: fi, Total energy: fi + Etc + Erc

Optimal Solution for the continuous Problem: The dual of the above defined problem can

be written as:

F (~b) =
n∑

i=1

fi + λ(
n∑

i=1

gi − 1) +
n∑

i=1

µi(bi − bmax) +
n∑

i=1

γi(bmin − bi) (3.22)

where λ ≥ 0, µi ≥ 0 and γi ≥ 0.

An optimal solution to the above dual problem need to satisfy the following K.K.T condi-

tions [73]:

• ∂F
∂bi

= 0, ∀i ∈ [1, n]

• λ(
∑n

i=1 gi − 1) = 0



www.manaraa.com

52

• µi(bi − bmax) = 0, ∀i ∈ [1, n]

• γi(bmin − bi) = 0, ∀i ∈ [1, n]

In order to evaluate the first K.K.T condition we perform the following simplification.

Let R = (1 − R). Then we have, fi = ki(
2bi−1

bi

1

1−(1−R)
bi
li

) which can be simplified to fi =

ki(
2bi−1

bi

li
Rbi

). With this simplification the first K.K.T condition transforms into the following

condition.

[b2
i (2

bi ln2) − (2bi − 1)2bi]

b2
i

+
(µi − γi)b

2
i R

kili
=

λk′
iR

kili
(3.23)

In addition to the above K.K.T conditions, we use the following condition which is satisfied

by the optimal solution for most of the problem instances.

n∑

i=1

k′
i

bi

= 1 (3.24)

This is because, if
∑n

i=1
k′

i

bi
< 1 there is more room in the schedule to perform further mod-

ulation scaling and hence an optimal solution would always satisfy equation 3.24. However,

when the initial system utilization is extremely low leaving a huge room for modulation scal-

ing (for example say, every message can be transmitted at lowest modulation level) reducing

modulation levels of each message beyond a certain level (level 2 in figure 3.1) is not beneficial.

In such scenarios, the optimal solution might have
∑n

i=1
k′

i

bi
< 1. In this analysis, we ignore

those cases for simplicity and proceed with condition in equation 3.24.

Obtaining a closed form for bi from the above set of equations is rather difficult. However,

bi can be solved numerically using standard numerical analysis techniques. In this chapter,

we applied the Newton Raphson method to numerically solve for bi for each given problem

instance. The details of the numerical algorithm are omitted due to space limitations.

In the rest of the chapter, we refer to the above solution methodology as continuous algo-

rithm and denote the obtained solution as {lb1, ..lbn} where lbi denotes the modulation level

determined by the continuous algorithm for message mi.



www.manaraa.com

53

Now the above obtained solution can be approximated to obtain a discrete solution following

the rounding algorithm as follows, ubi = discrete(lbi) where the function discrete returns the

smallest supported discrete modulation level which is greater than lbi. The solution obtained

from the rounding algorithm is not optimal for the discrete version of the problem however, it

represents an upper bound of the optimal solution.

3.5 Energy-Aware Heuristic Scheduling Algorithm

In this section we present an efficient heuristic scheduling algorithm for the discrete version

of the scheduling problem. Consider a simple example with two periodic messages m1 and m2

with periods (equal to deadlines) T1 = 256ms and T2 = 512ms. Let the normalized source-

destination distances of the two messages be d1 = 0.8 and d2 = 1.0. Further, let the time

window of interest be [0, 512] i.e, To = 512ms and assume R = 0.99. In this example, we

assume all integers in the interval [5, 10] are valid modulation levels.

Figure 3.2 Illustrative example: schedules obtained by different algorithms

The default schedule of the two messages when transmitted at the highest modulation level

b = 10 is shown in figure 3.2. The first and second instances of the message m1 are denoted

as m11 and m12, respectively. The energy consumption values of the two messages can be



www.manaraa.com

54

calculated using equation 3.17 to obtain E1 = 91.08µJ and E2 = 71.16µJ considering all

the instances upto time 512ms. Therefore, the total energy consumption of this schedule is

162.24µJ . As shown in the default schedule, a lot of unused time is left (slack) in the schedule

which can be utilized to reduce the modulation levels of different messages. The objective of the

energy-aware scheduling algorithm is to allocate such available slack to different messages to

effectively reduce the total energy consumption of the schedule without violating the deadline

constraints.

Now, consider a greedy scheduling strategy where all the available slack is assigned to the

highest energy consuming message. Applying such a strategy to the example at hand results

in the greedy schedule shown in figure 3.2 where all the slack is allocated to m1. The energy

consumption of m1 in the greedy schedule is, E1 = 11.040µJ resulting in a total energy

consumption of 82.20µJ which corresponds to an improvement of about 50% over the default

approach.

Although the above greedy approach results in impressive energy savings for the example at

hand, it is in general not the best slack allocation approach. This is due to the following reason.

For each message, as we increase its slack allocation the energy consumption of the message

transmission reduces as it can now be transmitted at a lower modulation level. However, as we

further increase its slack allocation the subsequent energy reductions offered by that message

decrease due to convex relation between energy consumption and the modulation level. In

order to succinctly represent this characteristic, we define a metric called Energy Gain for each

message, mi as follows:

Gainij = ⌈
To

Ti
⌉(Eij − Eij−1) (3.25)

The energy gain, Gainij denotes the amount of energy reduction that would be obtained by

transmitting the message mi at a modulation level bj−1 as opposed to bj. Figure 3.3 plots the

energy gain values for the messages m1 and m2 as a function of the modulation levels, bj . The

following two observations can be made from this graph. First, as we decrease the modulation

level of a message the corresponding energy gain decreases. For example, Gain1,10 > Gain1,9



www.manaraa.com

55

(in figure 3.3,G1 > G3) . Second, the energy gains obtained by the largest energy consuming

message are not always the highest. For example, Gain1,9 < Gain2,10 (in figure 3.3,G3 < G2).

This observation proves that the above greedy scheduling algorithm is not the best strategy.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 3 4 5 6 7 8 9 10

E
ne

rg
y 

ga
in

 (u
J)

Modulation level (bj)

Behavior of the energy gain function

G1

G2

G3

G4

G6

G5

G8

G7

G10

G9

Gj > Gj+1

M1
M2

Figure 3.3 Energy gain function, Gainij versus bj

3.5.1 Movement Algorithm

Based on the above intuition, we now present our movement algorithm which allocates slack

to different messages incrementally, keeping track of their decreasing energy gain values. The

algorithm uses a simple data structure called the movement table which varies the modulation

levels across columns and contains different messages along the rows. Further, each message

is associated with a row in the table. As a result, the table has N columns and n rows. At

any given point of time, each message occupies a unique cell in its row. If a message is placed

in the column labeled bj it means that it has been assigned a modulation level of bj. The

movement table for the example is shown in figure 3.4.

When the movement algorithm begins, each message is placed in a cell corresponding to

its initial modulation level which is an input to the algorithm. By default, each messages is

assigned an initial modulation level of bmax which corresponds to column one (leftmost column)

in the movement table. Therefore, all the messages are placed in column one by default and



www.manaraa.com

56

Figure 3.4 Working of the Movement Algorithm

the rest of the entries are left empty in the table.

The objective of the movement algorithm is to move as many messages as possible to the

right without violating the deadline constraints. Each movement in the table corresponds

to an incremental slack allocation i.e, by moving a message mi from column bj to bj−1, the

movement algorithm allocates enough slack to mi such that it can now be transmitted at a

modulation level of bj−1 instead of bj . In order to ensure that such movement based slack

allocation preserves deadline guarantees, the schedulability test is verified before every move

in the algorithm. The pseudocode is presented in Algorithm 3. In the pseudocode, αi denotes

the current modulation level of message mi and next(αi) denotes the highest modulation level

that satisfies αi > next(αi).

The movement algorithm works as follows. In steps 1-7, the algorithm initializes the move-

ment table and different parameters. The algorithm also maintains a set (Q) consisting of all

the potential messages which can utilize more slack without violating the deadline constraints.

In steps 8− 20, the algorithm iterates over the messages in Q and attempts to move each mes-

sage one column to the right in the movement table. In step 9, the highest energy gain yielding

message is selected. The following step ensures that the selected message has a positive energy

gain. In step 12, the schedulability test is verified to check if reducing the modulation level of

mi would lead to any deadline violations. If the above assignment violates the schedulability

test, it is removed from the set Q. On the other hand if the test is satisfied, the modulation

level of the message is actually reduced by one level in step 16 and the message is moved one

column to the right in the movement table in the following step. Step 18 updates the utilization



www.manaraa.com

57

accordingly. Finally, if the message is assigned the minimum modulation level in this iteration

it is removed from Q in step 19 as its modulation level cannot be further reduced.

The computational complexity of the movement algorithm can be analyzed with the help

of the movement table. Each message can move at most N columns to the right and for

each column movement, the maximum gain yielding message is determined in linear time.

Therefore, the time taken by a single message is at most O(nN) and the total time taken by

all the messages in the worst case is O(n2N).

Input: set of n messages with their modulation levels, init bi

Output: Slack allocation for each message

Set U = 0;1

for i = 1;i ≤ n;i + + do2

Set αi = init bi;3

Place mi in the column labeled αi in the movement table;4

Add mi to set Q;5

Set U = U + L
WαiTi

6

end7

while Q 6= ∅ do8

Pick up the message mi with highest Gaini,next(αi) from Q;9

if(Gaini,next(αi) ≤ 0) break;10

Set U ′ = U − L
WαiTi

+ L
Wnext(αi)Ti

;11

if U ′ > 1 then12

Remove mi from Q ;13

Continue;14

end15

Set αi = next(αi);16

Move message mi one column to the right;17

Set U = U ′;18

if(αi == bmin) Remove mi from Q;19

end20

Algorithm 3: Movement Algorithm

Applying the movement algorithm to the example (see figure 3.4), all the messages are

initially placed in column one of the movement table. In the first iteration, message m1 is

selected as it yields the maximum energy gain, G1 (see figure 3.3) and is moved one column to

the right. In the next iteration, m2 is moved right by one column as G2 > G3. Following similar

procedure, both the messages finally reach the column labeled 6. The intermediate movements



www.manaraa.com

58

are shown as arrows in the figure 3.4 these movements are performed in the following order:

{G1, G2, G3, G4, G5, G6, G7, G8}. The algorithm terminates at this point as no more slack is

available. Figures 3.2 shows the resulting schedule where both m1 and m2 operate at b = 6

incurring a total energy consumption of 27.75µJ . This corresponds to an improvement of 82%

over the default schedule and 66% over the greedy schedule.

3.6 Performance Evaluation

We performed comprehensive performance evaluation studies to compare the relative per-

formance of the following scheduling algorithms:

• ILP

• Continuous algorithm (labeled as Lower bound)

• Rounding algorithm (labeled as Upper bound)

• Movement algorithm with default modulation levels as input (labeled as Mov-def).

• Movement algorithm with the output of the rounding algorithm as the input (labeled as

Mov-ub).

The performance metric is the normalized energy consumption where all energies are nor-

malized with respect to the non-DMS aware strategy which transmits each message at the

highest modulation level, bmax. We solved the ILP using the ILOG CPLEX 10.100 software

[74].

We conducted two sets of simulation studies. In each simulation set, we considered a square

region of size 500 ∗ 500 square meters where the nodes are randomly distributed following a

specific distribution. We used the following parameters: R = 0.99, N0 = 4 ∗ 10−13, ct =

75nJ, cr = 100nJ,W = 1MHz, li = 1024,∀i. For each simulation run, we generated 30 periodic

messages with randomly chosen source and destination nodes. The total energy consumption

of each schedule was calculated in the time window [0, LCM ], where LCM is defined as the

least common multiple of the message periods. In our simulations, for each parameter set of



www.manaraa.com

59

interest, we performed 20 different runs each with a different random number seed and the

obtained average is plotted as a single point in the graph.

In simulation set one, we followed the uniform distribution to randomly generate node

locations in the network. We varied the following parameters: system utilization, U =

∑n
i=1

li
WbmaxTi

and N , the number of discrete modulation levels allowed to compare the per-

formance of the proposed schemes. The N modulation levels are equally spaced integers (as

much as possible) in the interval [1, 10]. We considered a network size of 50 nodes.

In the set two, we followed a clustered node distribution. The entire network consisted

of vc clusters each with a radius rc. The cluster locations are randomly chosen following a

uniform distribution. The total number of nodes are equally divided among the vc clusters.

Within each cluster, the nodes assigned to it are randomly distributed following a uniform

distribution. In our simulation studies we varied the vc and rc parameters. Please note that

the communication under this model is still single-hop in nature and we have chosen the above

clustered distribution to study the effect of non-uniformity in node locations in the network.

3.6.1 Results for uniform node distribution

3.6.1.1 Effect of utilization(U)

Figure 3.5, shows the relative performance of the above schemes. As the utilization in-

creases, the total energy consumption also increases due to the increased workload. All the

schemes show this trend. At low values of U , there is ample slack available and all most all

the messages can be transmitted at low modulation levels. As a result the gap between the

schemes is less in the graph. Similarly, at U = 1.0 there is no slack available to perform any

dynamic modulation scaling, as a result all the schemes behave like the default non-DMS-aware

scheme. Throughout the range, both Mov-def and Mov-ub perform significantly better than

the upper-bound and moreover, both of them show a performance very close to that achieved

by the ILP. At U = 0.6, Mov-ub shows an improvement of 13% over the upper-bound and

incurs as less as 1.5% and 5% energy over the ILP and lower-bound, respectively. Similarly,

at U = 0.90, it shows an improvement of 16% over the upper-bound and incurs as less as 1.2%



www.manaraa.com

60

energy over the ILP.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

N
or

m
al

iz
ed

 e
ne

rg
y 

co
ns

um
pt

io
n

Utilization

Effect of utilization

Upper bound
Mov-def
Mov-ub

ILP
Lower bound

Figure 3.5 Effect of utilization (N = 10)

3.6.1.2 Effect of number of modulation levels (N)

Figure 3.6 compares the relative performance of the schemes by varying the number of

discrete modulation levels supported by the communication hardware. As N increases, all the

schemes get closer and closer to the lower-bound (i.e, the solution to the continuous problem).

At low N , the upper-bound turns out to be a very course grained approximation of the contin-

uous solution leaving a lot of room for improvement. As a result at N = 3, both Mov-def and

Mov-ub show significant improvements over the upper-bound while at N = 10, they get closer

to the upper bound. Specifically, at N = 3, Mov-ub shows an improvement of 45% over the

upper-bound while incurring less than 1% energy over the ILP. Similarly at N = 7, it shows

an improvement of 22% over the upper-bound while incurring as less as 1.5% over the ILP.

3.6.2 Results for clustered node distribution

3.6.2.1 Effect of number of clusters(vc)

Figure 3.7 compares the performance of the above schemes by varying the number of clusters

in the network (vc). As the vc increases, there are more clusters in the network and hence the



www.manaraa.com

61

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1  2  3  4  5  6  7  8  9  10

N
or

m
al

iz
ed

 e
ne

rg
y 

co
ns

um
pt

io
n

Number of Modulation Levels

Effect of Discrete Modulation levels

Upper bound
Mov-def
Mov-ub

ILP
Lower bound

Figure 3.6 Effect of number of modulation levels(U = 0.8)

nodes are more widely spread increasing the average distance of each randomly chosen source-

destination pair. Consequently, the energy of all the schemes increase with vc. However, as we

further increase vc, the spreading effect decreases consequently the energy consumption values

stabilize for all the schemes. Throughout, Mov-ub performs better than upper-bound showing

an average improvement of 15% and on an average the incurs as less as 1% energy compared to

the ILP. The Mov-def also shows similar energy savings incurring slightly higher energy than

Mov-ub.

3.6.2.2 Effect of cluster radius(rc)

Figure 3.8 compares the performance of the above schemes by varying the normalized

cluster radius(rc). Where the cluster radii are normalized with respect to the diagonal (longest

possible source-destination distance in the network) of the square region. As the rc increases,

each cluster expands and its nodes become more widely spread increasing the average distance

of each randomly chosen source-destination pair. Consequently, the energy of all the schemes

increase with rc. Throughout, both the movement algorithms perform better than upper-

bound showing an average improvement of 15% and on an average they incur as less as 3%

energy compared to the ILP.



www.manaraa.com

62

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1  2  3  4  5  6  7  8  9  10

N
or

m
al

iz
ed

 e
ne

rg
y 

co
ns

um
pt

io
n

Number of Clusters

Effect of number of clusters

Upper bound
Mov-def
Mov-ub

ILP
Lower bound

Figure 3.7 Effect of number of clusters (N = 10, U = 0.8, rc = 0.10)

3.7 Discussion

In this chapter, we addressed the problem of scheduling a set of periodic real-time mes-

sages in a shared medium wireless network with the objective of minimizing the total energy

consumption while meeting the required deadline and reliability constraints. We employed

the dynamic modulation scaling (DMS) technique as the basic underlying power management

mechanism. We first presented an ILP formulation for the discrete version of the problem.

Since solving an ILP can take exponential amount of time, we derived lower and upper bounds

by solving the continuous version of the problem using Lagrangian Multiplier technique. Fi-

nally, we presented an efficient polynomial time heuristic scheduling algorithm. Our simulation

studies show that the proposed heuristic algorithm achieves significant improvements over the

derived upper-bound and it offers comparable energy savings to that obtained by solving the

ILP. In our future work, we plan to address the same problem for a different reliability model

where the required message reliability is achieved via retransmissions instead of a single mes-

sage transmission with high transmission power. Further, we plan to extend our work presented

in this chapter to a multi-hop network setup.



www.manaraa.com

63

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.05  0.1  0.15  0.2  0.25

N
or

m
al

iz
ed

 e
ne

rg
y 

co
ns

um
pt

io
n

Cluster radius

Effect of cluster radius

Upper bound
Mov-def
Mov-ub

ILP
Lower bound

Figure 3.8 Effect of cluster radius (N = 10, U = 0.8, vc = 4)



www.manaraa.com

64

CHAPTER 4. Energy management in communication system using power

adaptation

In this chapter, we address the communication energy management problem by employ-

ing power adaptation technique as the underlying energy management mechanism. First, we

quickly review the related work and then present the problem statement, proposed solutions,

and results.

4.1 Related work and motivation

Several energy-aware protocols have been proposed to address the challenge of providing

deterministic and reliable real-time services over the wireless networks. These protocols can

be broadly classified into two classes based on the kind of service they provide:

• Throughput oriented: This class of protocols exploit the tradeoff between energy con-

sumption and network throughput. In [83], a protocol framework has been proposed for

multi-hop wireless networks to maximize the throughput while keeping the energy costs

low. These protocols primarily target different non-real-time applications where timely

message delivery is not of paramount importance.

• Soft real-time: This category of protocols try to minimize either the latency or deadline

violations in a best effort manner. The protocols which aim at minimizing the latency [84,

85] cannot provide any kind of guarantees and are unsuitable for real-time applications.

On the other hand, the existing protocols which try to minimize the deadline violations

either ignore the time varying nature of the wireless channel or try to minimize the

deadline violations in a best effort manner. In [87], a centralized real-time MAC (Medium



www.manaraa.com

65

Access Control) protocol is presented which works over the Hybrid Coordination Function

(HCF) protocol of IEEE 802.11 with the aim of facilitating long sleep durations for

the individual nodes. The authors proposed a non-preemptive EDF (Earliest Deadline

First) based algorithm for message scheduling in the MAC layer assuming a non-time-

varying channel. In [88], an energy aware data gathering protocol is presented for wireless

sensor networks which uses dynamic modulation scaling technique to minimize the energy

consumption while meeting the deadlines. Both the above protocols do not provide any

per message guarantees and when applied to a typical time varying channel, the proposed

algorithms might lead to unpredictable number of deadline violations.

Some protocols provide more precise guarantees like minimum deadline success ratio

which is defined as the fraction of the input messages that are guaranteed to meet the

deadline. In [89], the problem of scheduling multiple video streams has been considered

where each stream is guaranteed a minimum deadline success ratio while minimizing the

total energy consumption. These protocols are suitable for multimedia applications where

occasional deadline violations are tolerable; however, they cannot provide per message

guarantees and hence cannot be directly applied to real-time applications.

Providing hard deadline guarantees in a wireless environment is practically infeasible due

to the time varying and lossy nature of the wireless channel [92]. In other words, in a wireless

environment, it is not possible to guarantee that a given message can be successfully transmit-

ted before a specified deadline with 100% probability. Therefore, allocating certain amount of

resources (e.g. time slots) to a deadline constrained message ignoring the channel conditions

may not always result in successful and timely message delivery. Moreover, the probability

of timely message delivery increases with the amount of resources allocated to the message.

Therefore, resource allocation should be done both based on the required probability of meeting

the message deadlines as well as considering the nature of the channel.

In this chapter, we target hard real-time applications like industrial automation and mili-

tary surveillance where each message needs to meet its deadline with a very high probability

e.g, (1 − 10−5). Providing such high success probabilities establishes a tremendous degree of



www.manaraa.com

66

determinism in meeting the message deadlines which is critical for the targeted applications.

With this motivation, for every message, we consider a minimum success probability con-

straint along with the conventional deadline (latency) constraint. In the rest of the chapter, we

refer to the probability of meeting the deadline as reliability. Therefore, if a periodic message,

mi has a reliability constraint of Relt and a deadline of Ti, this means that every instance of

mi should reach the destination before the deadline Ti with a minimum probability of Relt.

Energy consumption becomes a critical factor when trying to provide such hard guaran-

tees on a per message basis. Over-allocating resources to attain high reliabilities can result in

intolerably high energy consumptions which can subsequently bring the network down. There-

fore, the three parameters: deadline, reliability and energy consumption should be considered

together in order to provide hard guarantees over a wireless network, which is the focus of

the chapter. The protocols presented in [85] consider the three parameters together. However,

they provide latency and reliability guarantees in a best effort manner and hence are unsuitable

for hard real-time applications.

4.2 Problem Statement

Our basic approach is as follows: Instead of transmitting a message directly from the source

to destination in one hop, it is possible to reduce the energy consumption if the message is

transmitted via multiple hops with each hop being smaller than the direct hop. Most of the

existing work [93, 94] which uses such hop-by-hop transmissions primarily addressed energy

aware throughput optimization problems which cannot be directly used for the scheduling of

messages with deadline and reliability constraints.

The strategy of transmitting messages via multiple smaller hops would reduce the energy

consumption while incurring more time as each hop communication would occupy an entire

time slot in the shared wireless medium. Further, such a strategy would also reduce the message

reliability.

Problem Statement: Considering these tradeoffs, the objective of this chapter is to design

efficient message scheduling algorithms which determine a hop-by-hop path for each input mes-



www.manaraa.com

67

sage with the goal of minimizing the overall energy consumption while providing per message

deadline and reliability guarantees.

The rest of the chapter is organized as follows: In section 4.3 we present our system model

followed by the problem statement. We also prove that the problem is NP-Hard. In section

4.4, we present an ILP formulation for the scheduling problem. In section 4.5, we present a

motivational example followed two heuristic scheduling algorithms. We present our simulation

results and conclusions in sections 4.6 and 4.7 respectively.

4.3 System Model and Problem Formulation

4.3.1 System Model

4.3.1.1 Network Model

We consider a wireless network with v nodes which share the common wireless medium that

is accessed in an exclusive manner. A source can communicate with a destination either directly

or by making several hop-by-hop transmissions through intermediate nodes. We assume that

the shared wireless medium is slotted in time with a fixed slot size. All messages are of equal

length, each consisting of L bits and incur a single time slot for a transmission irrespective of

the source and destination.

4.3.1.2 Channel Model

Although all the nodes in the network are in the same interference range and share the

wireless medium, each channel connecting a pair of nodes behaves independent of the other.

In this chapter, we assume that each channel independently follows the Rayleigh fading model

and has a bandwidth of W Hertz.

Assuming a Quadrature Amplitude Modulation (QAM) scheme, the SNR (signal-to-noise

ratio) achieved at the receiver when receiving a message of L bits with energy Erecv can be

calculated as:



www.manaraa.com

68

SNR =
log2MErecv

LN0
(4.1)

where M and N0 denote the modulation level and the noise power respectively. For a

Rayleigh fading channel with high SNR the BER (bit error rate) can be estimated as:

BER ≈
2(M − 1)

3

1

SNR
(4.2)

In order to support a minimum SNR (or maximum BER) at the receiver the signal should

be transmitted with an energy equal to Ets given by:

Ets = Erecvd
2 (4.3)

where d denotes the normalized source destination distance. Using equations (4.1-4.3) the

expression for Ets can be derived as follows:

Ets =
2L

3

M − 1

log2M

N0

BER
d2 = Cd2 (4.4)

where, C is defined as: C = 2L
3

M−1
log2M

N0

BER

Similarly, the time taken for transmitting a L-bit message (which is also equal to the slot

size) over a channel is given by:

T =
L

Wlog2M

In the rest of the chapter, we assume that the parameters: L, W , N0, BER and M (and

hence C) remain fixed across different channels and transmissions.

4.3.1.3 Energy Model

• Transmission energy: Energy consumed in transmitting a message of L bits consists

of the following two components: the energy provided by the power amplifier to the

electromagnetic signals (Ets, in eq (4.4)) carrying the message and the energy consumed



www.manaraa.com

69

by the electronic circuitry (Etc)[65]. Therefore, the total transmission energy Et is given

by:

Et = Ets + Etc (4.5)

where,

Etc =
LCt

log2M
(4.6)

• Reception energy: The total energy consumed in receiving a message of L bits is equal

to the energy consumed by the electronic circuitry (Erc) and is given by [65]:

Erc =
LCr

log2M
(4.7)

Here, Ct and Cr are implementation dependent constants. In the rest of the chapter, we will

primarily use equations 4.4-4.7.

4.3.2 Problem Formulation

Consider a set of periodic messages (m1,m2, ...,mn) where each message mi has a period

Ti equal to its deadline. Let pathi1, pathi2...pathij ...pathiNi
denote the different possible paths

between the source and destination nodes of mi. The objective of the scheduling problem is to

choose one of the Ni paths for each message mi which minimizes the total energy consumption

while guaranteeing both the reliability and deadline constraints. When dealing with periodic

messages, the total energy consumption is defined with respect to a time window, say [0, To],

where To is an application specific parameter. For a given To, the problem can be mathemati-

cally stated as follows:

Minimize n∑

i=1

Ni∑

j=0

⌈
To

Ti
⌉Eijxij (4.8)

Subject to:
n∑

i=1

∑Ni

j=0 δijxij

Ti
≤ 1 (4.9)



www.manaraa.com

70

Ni∑

j=0

Relijxij ≥ R,∀i ∈ [0,M ] (4.10)

Ni∑

j=0

xij = 1,∀i ∈ [0,M ] (4.11)

xij ∈ {0, 1}, ,∀i, j (4.12)

where, Eij is defined as the total energy consumption incurred by the transmission of

mi over pathij ; δij and Relij denote the latency incurred and reliability offered by pathij

respectively. The objective function in equation (4.8) represents the total energy consumed by

the message set in a time window of [0, To]. The constraint in equation (4.9) ensures that the

message set remains schedulable under a work conserving scheduler like EDF (earliest deadline

first). Equation (4.10) represents the per message reliability constraint. The binary variable

xij indicates the selected path for mi and the constraint in equation (4.11) ensures only one of

the Ni paths is chosen for each message mi.

Message reliabilities can be provided by either performing retransmissions whenever nec-

essary or by performing a single transmission with high enough energy. Each one of the

two options presents a different kind of a energy-time tradeoff and they both require differ-

ent scheduling approaches to solve the above formulated problem. In this chapter, we follow

the single transmission model where each message is transmitted just once with high enough

energy.

For the single transmission model, the path reliabilities can be calculated from the con-

stituent link reliabilities as follows. Assuming a constant BER across different channels, the

reliability of each channel/link is given by:

Rel = (1 − BER)
L

log2M

where, channel reliability is defined as the probability that a L-bit message can be suc-

cessfully transmitted over the channel in one time slot. The reliability of a path consisting of

h hops is defined as the probability that a message can be successfully transmitted over the



www.manaraa.com

71

path in h time slots. It can be calculated as: Relh. Consequently, the reliability constraint in

equation (4.10) gets reduced to a hop constraint as follows:

Ni∑

j=0

hijxij ≤ β (4.13)

where hij denotes the number of hops in pathij and β denotes the hop constraint obtained

as the largest integer h satisfying the relation: Relh ≥ Relt.

4.3.3 Problem complexity

The scheduling problem with deadline and reliability constraints is NP-Hard. In this sec-

tion, we prove this by reducing the well-known Multiple choice knapsack problem [72] to the

problem at hand. Please refer to the definition of the MCKP problem presented in section

3.3.2 of chapter 3.

Theorem: The message scheduling problem with deadline and reliability constraints is NP-

hard.

Proof: For the convenience of reduction, we rewrite the maximization objective of the MCKP

as the following minimization objective.
λ∑

i=1

∑

j∈Ni

(1 − pij)xij

Now, the MCKP has a one to one correspondence with the scheduling problem and can

be reduced to an instance where all messages have a single period (and deadline) equal to To.

Create a message mi for each of the classes Ni. For each object Oij in Ni create a path pathij

with exactly β hops between the source and destination nodes of the message mi. Further,

assign an energy consumption of Eij = (1 − pij) and a latency δij = wij to pathij . This

reduction takes O(
∑λ

i=1(| Ni |)k) amount of time which is clearly a polynomial of the problem

size. This implies that if the scheduling problem can be solved in polynomial time, then the

MCKP can also be solved in polynomial time. However, it is known that the MCKP problem

is NP-hard [72]. Therefore, the scheduling problem is also NP-hard.



www.manaraa.com

72

4.4 ILP Formulation

In this section, we present an ILP formulation for the scheduling problem. We use the

following symbols in the formulation:

• A: set of edges/hops in the network with v nodes. Since it is a broadcast medium, there

are v2 − v edges in A.

• n: number of input messages.

• di,j : distance between nodes i and j in the network.

• C: constant in equation 4.4.

• To: Time window during which the total energy consumption of the message set should

be optimized.

• yi,j,k: binary integer variable which indicates if the hop (i, j) in the network is chosen as

a part of path for message mk.

• Sk: the source node of message mk.

• Dk: the destination node of message mk.

• Tk: period (equal to deadline) of message mk.

• β: Maximum number of hops allowed per path by the reliability constraint.

The following formulation accepts a set of periodic messages and outputs a path for each

message which minimize the overall energy consumption while guaranteeing the deadline and

reliability constraints:

Minimize:

n∑

k=1

∑

(i,j)∈A

⌈
To

Tk

⌉(Cd2
i,j + Etc + Erc)yi,j,k (4.14)



www.manaraa.com

73

Subject to:

∀k,
∑

(q,i)∈A

yq,i,k −
∑

(i,j)∈A

yi,j,k =






-1 if i = Sk

0 if Sk 6= i 6= Dk

1 if i = Dk

(4.15)

N∑

k=1

∑
(i,j)∈A yi,j,k

Tk

≤ 1 (4.16)

N∑

k=1

∑

(i,j)∈A

yi,j,k ≤ β (4.17)

where,

yi,j,k ∈ {0, 1},∀i, j, k (4.18)

The objective function in equation 4.14 denotes the total energy consumption of the message

set in the time window [0, To] and is similar to equation 4.8. The constraint in equation 4.15

ensures a connected path is selected for each message. Equations 4.16 and 4.17 represent the

schedulability constraint and the reliability constraint respectively. Equation 4.18 specifies

that yi,j,k as a binary integer variable.

Although the ILP model is computationally-intensive to be used for large network sizes and

message sets, it is helpful in determining a lower bound on the amount of energy consumed by

a given message set.

4.5 Energy-aware Scheduling algorithms

Solving an ILP can demand excessively high computing and memory resources for reason-

ably large problem sizes. Therefore, in this section we present heuristic scheduling algorithms

which provide effective energy reductions in polynomial time.

The proposed energy-aware algorithms employ the EDF (earliest deadline first) as the

underlying scheduling policy. Given a set of n periodic messages (m1,m2...mn) each having a

path latency of ti and a period of Ti, the task set is schedulable under EDF if and only if the

following condition satisfies:



www.manaraa.com

74

U =
n∑

i=1

ti
Ti

≤ 1 (4.19)

where U denotes the total system utilization. We assume all scheduling decisions (message

arrivals, preemptions, transmissions etc.) are made at the slot boundaries.

The proposed scheduling algorithms select a path for each input message while ensuring the

resulting message latencies do not violate the EDF schedulability and reliability constraints.

In the following, we present a motivational example demonstrating the working of the de-

fault direct hop strategy. In the subsequent sections, we use the same example to demonstrate

the working of other energy-aware scheduling algorithms.

4.5.1 Motivational example

Consider three periodic messages m1(source = A, destination = F ), m2(J,K) and m3(G,H)

which start at time zero and have a common period (equal to deadline) of 7 time slots. Further

assume that each message needs to meet its deadline with a minimum probability of (1−10−5)

i.e, Relt = (1 − 10−15). In each time slot, only one message can be transmitted and each

message transmission takes an entire slot irrespective of the source and destination. Figure 4.1

shows the network. Table 4.1 lists the normalized inter-node distances of interest.

Figure 4.1 Illustrative example: direct hop strategy



www.manaraa.com

75

Hop (i, j) Distance (dij) Hop (i, j) Distance (dij)

(A,F ) 0.755 (A,D) 0.380

(G,H) 0.600 (D,F ) 0.376

(J,K) 0.082 (A,C) 0.335

(A,B) 0.123 (B,D) 0.257

(B,C) 0.212 (G,B) 0.213

(C,D) 0.046 (B,C) 0.212

(D,E) 0.217 (B,H) 0.389

(E,F ) 0.169 (C,H) 0.216

(C,E) 0.262 (G,A) 0.113

Table 4.1 Motivational example: normalized inter-node distances

L(bits) M BER No(nJ) Ct(nJ) Cr(nJ)

1024 256 10−8 10−4 75 100

Table 4.2 Parameter values [65]

Using the parameter values listed in table 4.2 we get β ≤ 7, C = 0.21760J , Etc = 9.6µJ

and Erc = 12.8µJ .

Now consider the direct hop strategy where all messages are scheduled via the direct

hops between the source destination nodes. Figure 4.1 depicts this scenario. The corre-

sponding schedule is also shown in the same figure where y-axis denotes the power con-

sumption (proportional to distance square) and the x-axis denotes the time. In the sched-

ule shown, the individual hops used in each time slot are marked against it. Using equa-

tions 4.4-4.7, the energy consumption of the direct hop strategy can be calculated as: E1 =

(C ∗ (dAF )2 + Etc + Erc) + (C ∗ (dJK)2 + Etc + Erc) + (C ∗ (dGH)2 + Etc + Erc) = 203.904mJ .

4.5.2 Greedy Scheduling Algorithm

The direct hop strategy described above transmits each message directly in one single

hop leaving the slack (extra time slots) unused. In the above example, the time slots 3 to

7 are left unused. Such leftover slack can be used to transmit some of the messages via less



www.manaraa.com

76

Figure 4.2 Illustrative example: greedy strategy

energy consuming multiple shorter hops instead of one long hop. The goal of an energy-aware

scheduling algorithm is to distribute the available slack (which is often scarce) among the input

messages with the objective of reducing the total energy consumption while guaranteeing the

deadline and reliability constraints.

The greedy algorithm utilizes the available slack to perform hop-by-hop transmissions for

as many messages as possible. The basic idea of the algorithm is as follows: it calculates the

maximum available slack and assigns it to the highest energy consuming message. Using this

slack a new path with shorter hops is selected for that message.

The pseudo-code for the greedy algorithm is presented in Algorithm 4. The algorithm

works on an input schedule. By default, the direct hop schedule is assumed as the input

schedule. The number of slots allocated to each message mi is denoted by ti. It also denotes

the number of hops that the message can take in its source-destination path. In steps 3 to

12, the algorithm iterates over all messages choosing the highest energy consuming message

first (step 6). In step 7, the total available slots for the chosen message are calculated. In step

9, the available slots are adjusted to ensure that reliability constraints are not violated. In



www.manaraa.com

77

Input: input schedule Hi, hop constraint β

Output: Output Schedule, Ho

Set i = 0 and Ho = Hi;1

Set U =
∑N

j=1
tj
Tj

;2

while i ≤ n do3

Set i = i + 1;4

Calculate s = 1 − U ;5

Pick up the next message (say mi) with highest energy consumption in6

Ho;

Calculate available slots p = ⌊sTi⌋;7

if(p < 1) continue;8

Set p = min(β, p + ti);9

Find the shortest path for mi with at most p hops; denote the number10

of hops in the shortest path with q, where q ≤ p;

Set U = U − ti
Ti

+ q
Ti

;11

Set ti = q and update schedule Ho accordingly;12

end13

Algorithm 4: Greedy(Hi,β), Greedy Scheduling Algorithm

step 10, the shortest path with at most p hops is selected. During this step, the edge weights

are chosen as the corresponding energy consumption values considering all the components as

discussed in section 4.3. Finally, the utilization and the schedule are updated in steps 11 and

12, respectively.

Considering the example discussed earlier, the greedy algorithm would choose the message

m1(A,F ) and assign the total available slack (four slots) to it which results in a five hop path

for m1 as shown in figure 4.2. The corresponding schedule is also shown in the same figure. The

total energy consumption for this schedule is 109.949mJ which corresponds to an improvement

of 46% over the direct hop strategy.

The computational complexity of the greedy algorithm is dominated by the shortest path

calculation step. In this chapter, we assume the all-pairs shortest path algorithm presented

in [95] is executed prior to running the greedy algorithm and the results are stored in a table

appropriately. With this arrangement, the worst-case run times of the greedy algorithm is

O(v3log2v + n2) where, v is the number of nodes in the network and n denotes the number of

input messages.



www.manaraa.com

78

4.5.3 Movement Algorithm

The greedy scheduling algorithm assigns all the available slack to the next highest energy

consuming message in a greedy fashion. However, such an approach cannot reduce the total

energy consumption effectively.

As we increase the slack allocation for a particular message the energy consumption of

the message transmission reduces as each additional slot can potentially replace a long hop

with two smaller hops in the path. However, as we further increase its slack allocation the

subsequent energy reductions offered by that message decrease due to the convex relation

between energy consumption and the hop distance (equation 4.4). In order to succinctly

represent this characteristic, we define a metric called Energy Gain for each message, mk as

follows:

Gain(mk, j) = ⌈
To

Tk

⌉(E(mk, j − 1) − E(mk, j)) (4.20)

where, E(mk, j) denotes the energy consumption of the message mk when transmitted

over the least energy consuming path between its source and destination with at most j hops.

Clearly, the energy gain is defined for 2 ≤ j ≤ β.

The energy gain, Gain(mk, j) denotes the amount of energy reduction that would be ob-

tained by allowing message mk to take j hops as opposed to j − 1 hops. In other words, it

represents the energy reduction that would be obtained by allocating one more time slot to

message mk which is currently using j − 1 hops. For effective energy savings, a good slack

allocation strategy would allocate slack to the highest energy gain yielding message.

For the example at hand, figure 4.3 shows the variation of the energy gain for each of the

three messages with increasing number of hops. Two important observations can be made from

this graph. First, as we increase the number of hops per message the energy gain decreases. For

example, Gain(m1, 2) > Gain(m1, 3) (referring to the graph, G1 > G3 > G5 > G6). Second,

the energy gains obtained by the largest energy consuming message are not always the highest.

For example, Gain(m1, 3) < Gain(m3, 2) (referring to the graph, G3 < G2). Therefore, slack

allocation should performed keeping track of the decreasing energy gain values of the individual



www.manaraa.com

79

Input: set of n messages

Output: Slack allocation for each message

Set U = 0;1

for i = 1;i ≤ n;i + + do2

Place mi in the first column of the movement table;3

Set hi = 1, number of hops of mi ;4

Add mi to set Q;5

Set U = U + hi

Ti
6

end7

while Q 6= ∅ do8

Pick up the message with highest Gain(mi, hi + 1) from Q;9

if hi + 1 > β then10

Remove mi from Q ;11

Continue;12

end13

Set U ′ = U − hi

Ti
+ hi+1

Ti
;14

if U ′ > 1 then15

Remove mi from Q ;16

Continue;17

end18

Move message mi one column to the right;19

Set hi = hi + 1;20

Set U = U ′;21

end22

Algorithm 5: Movement Algorithm



www.manaraa.com

80

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1  2  3  4  5  6  7  8

E
ne

rg
y 

ga
in

 (
G

ai
n(

m
k,

j))

Number of hops per path (j)

G1

G2

G3

G4
G5

G6G7

G1 > G2 > G3 > G4 > G5 > G6 > G7

m1(A-->F)
m2(J-->K)

m3(G-->H)

Figure 4.3 Energy Gain function

messages in the schedule.

We now present our movement algorithm which allocates slack to messages incrementally

(one slot/hop at a time) based on the respective energy gain values. The algorithm uses a

novel data structure called movement table (see figure 4.4).

The movement table varies the number of hops across columns and each message is asso-

ciated with a row in the table. Further, at any given point of time, each message occupies a

unique cell in that row. If a message is placed in the jth column it means that it has been

allocated j time slots and it takes the least energy consuming path with j hops. The movement

table for the example is shown in figure 4.4.

When the movement algorithm begins, all the messages are placed in column one (labeled

Hop 1) corresponding to a single hop transmission and the rest of the entries are left empty.

In figure 4.4, we however filled in other entries for the illustration purpose. In each entry,

the corresponding least energy consuming path is denoted. For example, the least energy

consuming path for message m1 with five hops is A,B,C,D,E, F as denoted in its column

five. There exists no six hop path for message m1 that consumes lesser energy than its five



www.manaraa.com

81

Figure 4.4 Illustrative example - Movement Table

hop path hence that entry is left empty.

The objective of the movement algorithm is to move as many messages as possible to the

right without violating the reliability and schedulability constraints. The number of columns in

the table denote the maximum number of hops allowed per message. The reliability guarantee

can be provided by limiting the number of columns to β. The schedulability test is verified

before every move in the algorithm. The pseudo-code for the movement algorithm is presented

in Algorithm 5.

In steps 1-6, the algorithm initializes the movement table and different parameters. The

algorithm also maintains a set (Q) consisting of all the potential messages which can utilize

more slack without violating any constraints. In steps 8 − 22, the algorithm iterates over the

messages in Q and attempts to move each message one column to the right in the movement

table. In step 9, the highest energy gain yielding message is selected. In the following step, it is

verified if the message can take one more time slot without violating the reliability constraint.

Similarly, in step 15, the schedulability test is verified to check if this slack allocation to mi

would lead to any deadline violations. If the selected message violates anyone of the above



www.manaraa.com

82

Figure 4.5 Illustrative example - Movement algorithm

tests, it is removed from the set Q. On the other hand, if all the constraints are satisfied, the

message is actually moved to the right in the movement table in step 19 and other parameters

are appropriately updated in steps 20 − 21 before proceeding to the next iteration.

Applying the movement algorithm to the example (see figure 4.4), all the messages are

initially placed in column one of the movement table. In the first iteration, message m1 is

selected as it yields the maximum energy gain, G1 (see figure 4.3) and is moved one column

to the right. The corresponding paths for each message is shown in brackets in the movement

table. In the subsequent iterations, messages m2 (gain = G2), m1 (gain = G3) and m2 (gain =

G4) are selected in that order and allocated one slot for each selection. After four iterations,

there is no slack available and hence the set Q becomes empty and the movement algorithm

terminates. The final positions of the messages in the movement table are highlighted in figure

4.4. The corresponding paths and the schedule are shown in figure 4.5. In this example, the

movement algorithm incurs an energy consumption of 76.99mJ and shows an improvement of

62% and 30% over the direct hop and greedy strategies respectively.

The computational complexity of the movement algorithm can be analyzed with the help



www.manaraa.com

83

of the movement table. Each message can move at-most β columns to the right and for each

column movement, the maximum gain yielding message is determined in linear time. Therefore,

the time taken by a single message is at most O(nβ) and the total time taken in the worst

case is O(n2β). The movement algorithm also assumes the shortest paths for each message

are calculated apriori therefore, the total worst case complexity of the movement algorithm is

O(v3log2v + n2β).

In each iteration of the movement algorithm, the highest energy gain yielding message is

allocated an additional time slot. In other words, for each additional time slot available the

movement algorithm takes a locally optimal decision of assigning it to the highest energy yield-

ing message. In general, such a locally optimal strategy cannot guarantee a global optimum

for discrete problem formulations (here time can only be varied discretely). However, for this

particular problem, we believe such an approach can result in a solution which is arbitrarily

close to the globally optimum solution. In our simulation results we noticed that this is indeed

the case.

4.6 Simulations studies

We performed two sets of simulation studies. In each set, we compared the performance of

the proposed scheduling algorithms against the solution of the ILP formulated in section 4.4.

We solved the ILP using the ILOG CPLEX 10.100 software [74].

In each simulation set, we considered a square region of size 500 ∗ 500 square meters where

the nodes are randomly distributed following a certain distribution. We used the communica-

tion model parameters listed in table 4.2. For each simulation run, we generated 20 periodic

messages with randomly chosen source and destination nodes. The performance metric was

the normalized energy consumption where all energies are normalized with respect to the di-

rect hop strategy. The total energy consumption of each schedule was calculated in the time

window [0, LCM ], where LCM is defined as the least common multiple of the message periods.

In our simulations, for each parameter set of interest, we performed ten different runs each

with a different random number seed and the obtained average is plotted as a single point in



www.manaraa.com

84

the graph.

In the simulation set one, we followed the uniform distribution to randomly generate node

locations in the network. We varied the following three parameters: U (system utilization), v

(the number of nodes) and β (hop constraint) to evaluate the performance of different schemes.

In the set two, we followed a clustered node distribution. The entire network consisted of vc

clusters each with a radius rc. The cluster locations are randomly chosen following a uniform

distribution. The total number of nodes are equally divided among the vc clusters. Within each

cluster, the nodes assigned to it are randomly distributed following a uniform distribution. We

believe such clustered node distributions are typical in applications like industrial automation.

In our simulation studies we varied the vc and rc parameters and compared the performance

of different schemes.

4.6.1 Results for uniform node distribution

4.6.1.1 Effect of utilization(U)

Figure 4.6, shows the relative performance of the above schemes. As the utilization in-

creases, the total energy consumption also increases due to the increased workload. All the

three schemes show this trend. At low values of U , there is ample slack available and all most

all the messages can be transmitted via multiple hops easily. As a result the gap between the

schemes is less in the graph. Similarly, at high values of U , there is almost no slack to per-

form any hop-by-hop transmissions as a result all the schemes default to direct transmission.

Throughout the range, the movement algorithm performs significantly better than the greedy

algorithm and moreover, it shows a performance very close to that achieved by the ILP. At

U = 0.5, the movement algorithm shows an improvement of 31% over the Greedy algorithm.

It incurs as less as 1.24% energy over the ILP.

4.6.1.2 Effect of number of nodes(v)

Figure 4.7 compares the relative performance of the schemes by varying the number of

nodes in the network. As v increases the likelihood of finding intermediate nodes for multi-



www.manaraa.com

85

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

N
or

m
al

iz
ed

 e
ne

rg
y 

co
ns

um
pt

io
n

Utilization

Effect of utilization

Greedy
Movement

ILP

Figure 4.6 Effect of utilization (v = 100, β = 7)

hopping increases; however, after a certain point further multi-hopping will not be possible

due to reliability and deadline constraints of the individual messages. Consequently, energy

consumption values remain fairly constant for all the schemes after a point. The Movement

algorithm shows an improvement of 29% and 31% over the Greedy scheme at v = 80 and

v = 200 respectively.

Interestingly, when v is increased from 20 to 40, the greedy scheduling algorithm actually

incurs more energy. This is because, with increased number of nodes in the network more slack

can be assigned to a single message as it can now find intermediate nodes more easily. As a

result, the greedy scheme allocates most of its slack to a subset of messages thereby missing

out other messages which could potentially yield better energy gains. However, as we further

increase v, this tendency is restricted by the deadline and reliability constraints and the greedy

scheme behaves as expected.

The Movement algorithm incurred as less as 1.4% and 1.24% more energy than the ILP at

v = 80 and v = 200 respectively. When v is increased beyond 300, the ILP solver ran out of

memory and could not find the optimal solution. For these cases, we extrapolated the values

obtained at v = 200 in the graph shown.



www.manaraa.com

86

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0  50  100  150  200  250  300  350  400

N
or

m
al

iz
ed

 e
ne

rg
y 

co
ns

um
pt

io
n

number of nodes

Effect of number of nodes

Greedy
Movement

ILP

Figure 4.7 Effect of number of nodes (U = 0.5, β = 7)

4.6.1.3 Effect of required reliability(β)

Figure 4.8 shows the effect of required reliability (Relt) on the three schemes by varying

the hop constraint, β. Higher the value of β lower is the required reliability. With increasing

β, each message is allowed to take more smaller hops and hence the total energy consumption

should decrease in general. However, due to the greedy nature of the Greedy algorithm, most

of the slack is allocated only to a subset of messages thereby missing out other messages which

could potentially yield better energy savings. As a result, the Greedy incurs higher energies

as we increase β. The Movement algorithm on the other hand, performs slack allocation

incrementally allocating each time slot to the next highest gain yielding message. At β = 5,

it shows an improvement of 18% over the greedy algorithm and incurs as less as 1.24% energy

more than the ILP.

4.6.2 Results for clustered node distribution

4.6.2.1 Effect of number of clusters(vc)

Figure 4.9, compares the performance of the three schemes by varying the number of

clusters in the network (vc). As the vc increases, there are more clusters in the network and



www.manaraa.com

87

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  2  3  4  5  6  7  8  9  10

N
or

m
al

iz
ed

 e
ne

rg
y 

co
ns

um
pt

io
n

number of allowed hops per path

Effect of required reliability

Greedy
Movement

ILP

Figure 4.8 Effect of the required reliability (v = 100,U = 0.5)

hence the nodes are more widely spread. As a result, it is more likely to find intermediate

nodes for the messages to perform hop-by-hop transmissions. Due to this phenomenon, the

total energy consumption reduces with increasing vc. All the three schemes show this trend.

Throughout the range, the movement algorithm performs better than the greedy algorithm

and offers a performance very close to that of the ILP. At vc = 6, it shows an improvement of

18% over the greedy algorithm and incurs as less as 1% energy more than the ILP.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 2  3  4  5  6  7  8  9  10

N
or

m
al

iz
ed

 e
ne

rg
y 

co
ns

um
pt

io
n

number of clusters

Effect of number of clusters

Greedy
Movement

ILP

Figure 4.9 Effect of number of clusters (v = 50, β = 7, U = 0.5, rc = 0.10)



www.manaraa.com

88

4.6.2.2 Effect of cluster radius(rc)

Figure 4.10, compares the performance of the three schemes by varying the normalized

cluster radius(rc). Where the cluster radii are normalized with respect to the diagonal (longest

possible source-destination distance in the network) of the square region. As the rc increases,

each cluster expands and its nodes become more widely spread. As mentioned earlier, it is more

likely to find intermediate nodes for the messages to perform hop-by-hop transmissions. Due

to this phenomenon, the total energy consumption reduces with increasing rc. All the three

schemes show this trend. Throughout the range, the movement algorithm performs better

than the greedy algorithm and offers a performance very close to that of the ILP. At rc = 0.15,

it shows an improvement of 20% over the greedy algorithm and incurs as less as 1% energy

more than the ILP.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.05  0.1  0.15  0.2  0.25

N
or

m
al

iz
ed

 e
ne

rg
y 

co
ns

um
pt

io
n

Cluster radius

Effect of cluster radius

Greedy
Movement

ILP

Figure 4.10 Effect of cluster radius (v = 100, β = 7, U = 0.5, nc = 10)

4.7 Discussion

In this chapter, we addressed the problem of scheduling real-time messages over a shared-

medium wireless network with the objective of minimizing the total energy consumption while

providing the stringent probabilistic deadline guarantees. We employed the technique of using



www.manaraa.com

89

less energy consuming hop-by-hop transmissions instead of high energy incurring direct hop

transmissions as a basis to solve this problem. After proving that this problem is NP-hard we

proposed two energy-aware scheduling algorithms and compare them against an ILP solution

of the scheduling problem. By means of our simulation results, we show that the proposed

algorithms’ performance is comparable to the ILP solution. In our future work, we plan

to extend the presented scheduling algorithms to a multi-hop wireless network setup where

parallelism offered by non-interfering transmission can be exploited.



www.manaraa.com

90

CHAPTER 5. System level energy management in single hop networks

This chapter formulates the system-level energy management problem involving messages

and tasks in a single-hop networked embedded systems. Here, we establish a novel framework

that allows to perform integrated communication and computation energy management to

achieve effective system-level energy savings.

The typical architecture in a networked real-time embedded system consists of several pro-

cessor controlled nodes interconnected via the wireless network. The system software running

on each node enables the execution of one or more concurrent tasks which are activated by

the arrival of triggering events generated by the external environment, a timer or arrival of a

message from another task. A response to an event generally involves several tasks to be exe-

cuted on different nodes and several messages to be exchanged in the network. For the proper

functioning of the whole system, each individual task as well as all the messages exchanged

need to complete before stringent deadlines while incurring as less energy as possible. An

effective energy-aware strategy for such a system would appropriately leverage the low power

modes supported by different components within each node of the network under a unified

system-level perspective.

5.1 Related work and motivation

Majority of the existing research work in the area of real-time energy-aware systems focused

on reducing the energy consumption of the processor employing the well known dynamic voltage

scaling (DVS) technique [79]. DVS refers to the technique of simultaneously varying the

processor voltage and frequency as per the performance level required by the tasks. DVS

allows to trade off processor’s speed for energy savings. Several energy aware real-time DVS



www.manaraa.com

91

algorithms have been proposed addressing a wide range of task scheduling problems for a

variety of system models [79, 78].

Recently, the focus of the research community has shifted from processor level energy

management to system-level energy management, wherein the objective is to minimize the

total energy consumption of the entire system as opposed to minimizing the processor energy

consumption alone. More specifically, the interplay between the DVS technique employed to

reduce the processor energy consumption and the rest of the system is being actively studied.

In [80], an optimal processor frequency has been analytically derived to minimize the system

energy consumption considering both the on-chip and off-chip workloads. The proposed so-

lutions are effective for computation intensive real-time applications and do not address the

communication aspects of the system.

The communication energy consumption of the system is considered in [81]. In their system

model, the authors consider a DVS enabled processor along with a wireless card that indepen-

dently employs a dynamic power management strategy wherein the card transitions between

an active and several low power states as per the out-going traffic. Depending on the current

state of the network card, the processor frequency is varied to control the finish times of the

tasks which are same as the release times of the corresponding messages. This is done with

the aim of maximizing the sleep durations for the network card and minimizing the sleep-to-

active and active-to-sleep transition overheads. This work however does not consider message

deadlines making it unsuitable for real-time applications where timely message delivery is of

paramount importance.

From a different perspective, more effective power management techniques [77] can be

employed to reduce the communication energy consumption as compared to low-power sleep

modes that are assumed in the above work. Some such techniques include, power adaptation

where transmission power is adapted based on the source-destination distance and dynamic

modulation scaling (DMS) where the modulation level of the out-going message can be reduced

to achieve transmission energy reductions [76].

Similar to the DVS technique employed in processor energy management, DMS allows to



www.manaraa.com

92

tradeoff message transmission times for energy savings. The dynamic changes in the modula-

tion level of the outgoing packets are communicated to the destination via the packet header

and hence, the overheads of modulation scaling are almost negligible. Several energy aware

DMS based schemes have been developed for non-real-time network applications [75] which

cannot be directly extended to handle real-time workloads. In [76], the energy-aware problem

of scheduling real-time messages at a single node is considered and a DMS based scheme has

been presented. However, presented scheme does not consider the local computation issues

and works at a node level ignoring the workload in the rest of the network. To the best of

our knowledge, ours is the first work which addresses the system-level energy management

problem considering both the computation and communication workloads in the network with

real-time constraints.

5.2 System Model and Problem Statement

We consider a single-hop wireless networked embedded system with n nodes which share

the common wireless medium that is accessed in an exclusive manner. We assume all nodes

in the network are time synchronized. Each node supports DVS with kt discrete frequency

levels and DMS with km discrete modulation levels. In the examples and simulation studies

we use the PXA255 processor’s power specifications [82] shown in figure 5.1.(b) to model the

processor energy consumption.

Task Model: We consider m periodic complex real-time tasks whose deadline is same as

the period. Each complex task consists of several message exchanging sub-tasks where each

sub-task has precedence constraints with other sub-tasks. For simplicity, in the rest of the

chapter we refer to sub-tasks as tasks. For each given complex task, all its tasks and messages

need to complete their execution before the deadline, respecting the precedence constraints.

Figure 5.1.(a) shows the precedence graph of an example complex real-time task where nodes

denote the tasks and edges denote the messages. We use the following notation in the rest of

the chapter. For each task Ti, desc(Ti) denotes the set of messages which are produced by it.

For example, desc(T2) = {M1,M2}. Similarly, pred(Ti) denotes the predecessor messages of



www.manaraa.com

93

Ti. For example, pred(T5) = {M3,M4}. The workload for the tasks is specified as the number

of CPU cycles (denoted as CC) and for the messages it is specified as the number of bits

(denoted as L). We assume tasks and messages are non-preemptible.

Figure 5.1 Task and CPU model

Problem Statement: The following issues need to be handled while scheduling such complex

tasks in a networked embedded system with several embedded devices: (1) Task allocation -

mapping individual tasks to nodes, (2) Scheduling - scheduling local tasks at each node and

messages in the shared wireless medium, (3) Assigning frequency and modulation levels to

the individual tasks and messages, respectively. Rich literature exists addressing the first two

issues [96]. Therefore, in this chapter we assume that task allocation and scheduling have been

performed apriori to obtain a feasible schedule. Our primary focus is on assigning frequency

and modulation levels to different tasks and messages respectively, to reduce the total energy

consumption of the input schedule. This involves performing slack allocation across tasks and

messages without violating the deadline and precedence constraints.

In the rest of the chapter, we use the generic term performance level whenever we intend to

refer to either a task’s frequency level or a message’s modulation level. Similarly, we use the

generic term entity to refer to either a task or a message in the schedule. In these terms, our

goal is to assign appropriate performance levels to different entities in the input schedule with

the objective of minimizing the total energy consumption while not violating the deadline and

precedence guarantees provided by the input schedule.

Communication Model: We assume that the modulation is Quadrature Amplitude Mod-

ulation (QAM). The channels are modeled as frequency-flat Rayleigh fading. Let b denote

the number of bits per modulation constellation symbol. The constellation size is denoted as

M = 2b. Let Eb denote the received energy per bit, N0/2 denote the channel noise power



www.manaraa.com

94

spectral density, Es denote the received energy per constellation symbol, d2
min the minimum

average squared Euclidean distance between two constellation symbol at the receiver, and BER

denote the bit error rate. We have the following relationships:

b = log2 M (5.1)

BER ≈ N0/d
2
min (5.2)

d2
min =

6

M − 1
Es (5.3)

Es = bEb (5.4)

The approximation in (5.2) is valid for high signal-to-noise ratio (SNR). Combining these, we

have

Eb ≈
2b − 1

6b
·

N0

BER
. (5.5)

If a message contains L bits, then the total necessary received energy will be EL = L ·Eb. We

assume that the propagation loss follows a polynomial model: the power decays in the α-th

order of the distance:

Ets =

(
d

d0

)α

EL (5.6)

where Ets is the necessary transmitted energy to achieve a received energy of EL, d is the

distance between the transmitter and the receiver, d0 is a normalizing constant that depends

on the wavelength. Usually α is between 2 and 5. As a result, the total transmitted radio

energy can be expressed as

Ets =

(
d

d0

)α L(2b − 1)

6b
·

N0

BER
(5.7)

In addition to the Ets, some energy is consumed by the circuitry during the transmission

which is given by: Etc = LCt

log2M
. Similarly, the energy consumed in receiving a message is given

by: Erc = LCr

log2M
. Here Ct and Cr are implementation dependent constants[76]. In the rest of

the chapter, we assume N0 = 4 ∗ 10−13, BER = 10−6, Ct = 75nJ , Cr = 100nJ , L = 1024 and

W = 1KHz as the default values.



www.manaraa.com

95

The time taken for transmitting a L-bit message in the shared wireless medium is given

by:

T =
L

Wb
(5.8)

Here, W denotes the bandwidth (symbols per second) of the channel in hertz and the

bandwidth in bits per second can be calculated as Wb. We assume each node supports DMS

technique where modulation level (b) can be varied to tradeoff transmission latency for energy

savings. Further, we assume that the BER is designed low enough to provide the necessary

message reliabilities.

Notations: In the rest of the chapter, we use the following notation for each entity ei in the

schedule.

• R(ei): Ready time of the complex task to which ei belongs to.

• D(ei): Deadline of the complex task to which ei belongs to.

• st(ei): start time of ei in the schedule.

• ft(ei): finish time of ei in the schedule.

• T (ei, pα): processing time of entity ei when operated at the performance level, pα. For

a task, it is calculated as CC
pα

where pα refers to the operating frequency. Similarly, for a

message it is calculated as L
Wpα

where pα is its modulation level.

• E(ei, pα): energy consumption of entity ei when operated at the performance level, pα.

• est(ei): denotes earliest start time by which ei can be scheduled without violating any of

the constraints. It is calculated as, est(ei) = Max{prev ft(ei), pred ft(ei), R(ei)}. The

expressions prev ft(ei) and pred ft(ei) are defined below.

• lst(ei): denotes latest start time at which ei can be scheduled without violating any of the

constraints. It is calculated as, lst(ei) = Min{next st(ei), desc st(ei),D(ei)}−T (ei, pα).

The expressions next st(ei) and desc st(ei) are defined below.

• host(ei): denotes the processor on which ei is scheduled. If ei is a message, then it

refers to the common shared wireless medium. In the schedule shown in figure 5.3,

host(T2) = host(T1) = P2 and host(M2) = host(M1) = channel.



www.manaraa.com

96

• prev(ei): entity which is schedule right before ei on the same processor or channel. In

the schedule shown in figure 5.3, prev(T2) = T1 and prev(M2) = M1.

• next(ei): entity which is schedule right after ei on the same processor or channel. In the

schedule shown in figure 5.3, next(T1) = T2 and next(M1) = M2.

• pred ft(ei): earliest time by the which all the predecessor entities of ei will finish. Math-

ematically, pred ft(ei) = Max∀Mj∈pred(ei){est(ej) + T (ej , pα)}.

• prev ft(ei): earliest time by which the prev(ei) completes and is calculated as est(prev(ei))+

T (prev(ei), pα).

• desc st(ei): the latest time by which at least one of the descendant entities of ei will

start in the schedule. It is calculated as, desc st(ei) = Min∀ej∈desc(ei){lst(ej)}.

• next st(ei): the latest time by which next(ei) will start in the schedule.

5.3 Energy-aware scheduling Algorithms

In this section, first we analyze the system-level energy-time tradeoffs by defining a novel

metric called normalized energy gain. We then present an offline static scheduling algorithm

followed by a dynamic distributed scheduling algorithm.

5.3.1 System level energy-time tradeoffs

In order to effectively reduce the total energy consumption of the input schedule the avail-

able slack should be allocated across tasks and messages in the schedule. A good slack alloca-

tion strategy would allocate slack to the entity which results in maximum energy reduction for

every additional unit of slack allocated to it. To determine the best entity for slack allocation,

we define the following metric called normalized energy gain for each entity as follows:

G(i, i − 1) =
Ei − Ei−1

Ti−1 − Ti
(5.9)

Where Ei and Ti respectively denote the energy consumption and time incurred by the

entity when operated at ith performance level. For each entity ej which is currently assigned

the ith performance level, G(i, i−1) represents the energy reduction that would be obtained by



www.manaraa.com

97

reducing its performance level to i− 1 normalized with respect to the additional time incurred

for operating it at performance level i− 1 instead of level i. The energy gain metric succinctly

captures how effectively a given amount of slack is utilized by each entity and ideally slack

should be allocated to the entity which offers highest normalized energy gain. Figure 5.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10

E
ne

rg
y 

ga
in

: G
ai

n(
i,i

-1
),(

jo
ul

es
/s

ec
)

Modulation level(i)

System level energy-time tradeoffs

(CPU:400MHz -> 300MHz)

(CPU:300MHz -> 200MHz)

(b=10->b=9)

(b=9->b=8)

(b=3->b=2)

Comm(w=2KHz,d=1)
Comm(w=1KHz,d=1)

Comm(w=1KHz,d=0.5)

Figure 5.2 System level energy-time tradeoffs

shows the normalized energy gain for the messages as a function of i (modulation level) for

different values of W and d with message size, L = 1. It also shows the DVS energy gains

(horizontal lines) offered by a task of size CC = 1 for the PXA255 processor settings. The

following two important observations can be made from the figure.

1. As we decrease the performance level, the subsequent energy gains obtained are decreas-

ing both for the messages and tasks as shown in the figure. For example, the energy gain

obtained by reducing the CPU frequency from 300MHz to 200MHz is lower than that

obtained by reducing the frequency from 400MHz to 300MHz. Similarly, for a given

W and d, we have G(i + 1, i) > G(i, i − 1). This trend suggests that we should allocate

slack incrementally across messages and tasks keeping track of the decreasing energy gain

values.

2. The energy consumption of message transmission is in general higher than that of com-

putation and it may appear on the surface that the slack should be entirely allocated to

the messages. However, from the figure 5.2 we can see that the exact energy gains depend



www.manaraa.com

98

upon several parameters like W , d, the current modulation level b of the message and the

current frequency level of the task. For example, in the figure considering the curve with

W = 1KHz and d = 1, we have G(i = 8, i = 7) < G(400MHz, 300MHz) where as

G(i = 9, i = 8) > G(400MHz, 300MHz). This suggests that there are situations (spe-

cific values of W and d) where slack must be allocated to tasks rather than messages.

For the cases, where the message energy gains are higher than the task energy gains, the

energy gain metric helps comparing the energy reductions offered by each message and

guides the slack allocation across different messages.

In order to ensure a safe slack allocation mechanism, we estimate the maximum safe slack for

each entity prior to allocating any slack to it. For a given input schedule several task movement

techniques like sliding, passing and task migration can be applied to determine the maximum

safe slack for each entity. In this chapter, we use the sliding technique due to its simplicity.

The proposed algorithms can be easily extended to use the other techniques. In sliding, no

entity ei is allowed to start before prev(ei) finishes. Further, each entity ei should complete

before its next(ei) starts execution in the schedule and host(ei) should not be modified at any

point of time. Following this, the maximum available slack for each entity ei can be calculated

as lst(ei) − est(ei) − T (ei, pα) where pα is the currently assigned performance level of ei.

5.3.2 Gain based Static Scheduling (GSS)

We now present our offline gain based scheduling algorithm which assigns performance levels

to each entity in the input schedule. The GSS algorithm proceeds in iterations allocating slack

in an incrementally fashion. In each iteration, the highest energy gain yielding entity is chosen

and it is allocated just enough slack to reduce its performance mode by one level. The rest of

the slack is allocated similarly to the remaining entities in the schedule. At the end of each

iteration, the individual energy gain values are updated.

In order to keep track of the messages which can utilize more slack without affecting any

constraints, the GSS algorithm maintains a set Q and updates it after each iteration. The

algorithm terminates once the set Q becomes empty. The following step by step procedure

presents the GSS algorithm.



www.manaraa.com

99

The worst-case computational complexity of the GSS algorithm can be derived as O((n +

m)(nkt + mkm)) where n and m respectively denote the number of tasks and messages in the

schedule.

Figure 5.3 Illustrative example: input schedule

Figure 5.4 Working of the GSS algorithm

The illustrative example shown in figures 5.3 and 5.4 demonstrates the working of the GSS

algorithm. Figure 5.3 represents the input schedule. We are primarily interested in tasks

T2, T3, T4, T5 and messages M1,M2,M3,M4 whose precedence relationship is shown in figure

5.1.(a). For simplicity, we assume the other tasks in the schedule are independent; further, we



www.manaraa.com

100

assume a unit normalized source-destination distance for all the messages in the schedule. Our

algorithms however work for the general cases.

The GSS algorithm will first pickup the highest energy gain yielding entity, M4 which offers

an energy gain of 3107uJ (= N0

6BER
L(210−1

10 − 29−1
9 )) using 11ms (obtained as L

9W
− L

10W
) of

slack. In fact, M1, M2, M3 and M4 have equal energy gains (i.e, 3107/11 uJ/ms) at this

point. However M1 and M2 have zero maximum slack and the tie between M3 and M4 is

arbitrarily broken. Now, M4’s maximum available slack is determined by sliding T5 towards

the right as shown in the figures. Since M4 ∈ pred(T5), it will now have 48ms of slack to lower

its modulation level. Hence, the GSS algorithm reduces the modulation level of M4 to b = 9

using 11ms of slack. Before allocating the remaining slack, the M4’s energy gain is updated

to 1700/14uJ/ms which is now lower than that of M3 which is 3107/11 uJ/ms. As a result,

M3 is now given a slack of 11ms to lower its modulation level to b = 9. At this point, M3

and M4 have the same energy gains, breaking ties arbitrarily, GSS allocates more slack to M4

leaving 12ms of slack which is unusable by any of the entities in the schedule. The resulting

schedule is shown in figure in figure 5.4. The energy reduction obtained for message M4 can be

calculated as 4807uJ(= 3107+1700) and that of M3 is 3107uJ . Therefore, the GSS algorithms

has reduced the energy consumption of the schedule by 7914uJ(= 4807 + 3107).

5.3.3 Distributed Slack Propagation Algorithm (DSP)-Dynamic Slack

The actual execution times of tasks exhibit a large degree of variation and are often much

lesser than the worst-case estimates used in offline scheduling. As a result, in addition to

the static slack that is available offline, some dynamic slack is generated at run-time as the

schedule progresses. Such dynamic slack can be utilized to further scale-down the performance

levels of the tasks and messages.

Performing global dynamic slack allocation considering all the entities in the schedule re-

quires message passing across nodes via the wireless network which can incur exceedingly high

energy and time overheads. With this motivation, we have developed a light weight distributed

scheduling algorithm wherein each node independently follows the schedule generated by the



www.manaraa.com

101

Input: Input Schedule, Hi

Output: Output Schedule, Ho

Set Ho = Hi;1

Add all tasks and messages in Hi into the set Q;2

while Q 6= ∅ do3

Pick up the highest energy gain yielding entity ei from Q;4

Determine the maximum slack, Smax available for ei;5

Let s be the time required to operate ei at its next lower6

performance level;

if s ≤ Smax then7

Decrement the performance level of ei by one level;8

Update the schedule Ho;9

end10

else11

Remove ei from Q;12

end13

end14

Algorithm 6: Gain based Static Scheduling Algorithm

GSS algorithm; when the dynamic slack is generated on a processor it is utilized for local tasks

and locally originating messages in an independent manner requiring no additional communi-

cation across the processors. Such a distributed slack utilization policy can potentially lead

to deadline and precedence constraint violations if the independent decisions taken by each

processor are inconsistent. In this section, we first present our DSP scheduling algorithm and

then argue its correctness.

Whenever a task Ti completes its execution incurring less time than its worst-case execution

time, the generated dynamic slack can be utilized in one of the two ways. The next task,

next(Ti) can utilize all of the dynamic slack to reduce its own frequency or it can simply

slide left and allow its following task, next(next(Ti)) to use the slack. In other words, the

task next(Ti) can either use the slack for itself or propagate its slack to the following task

next(next(Ti)). Similarly, the task next(next(Ti)) can choose to propagate the slack to its

following task which is next(next(next(Ti))) and so on. In figure 5.5, task T1 completes at

time 100ms leaving 50ms of slack. Now this slack can be used to either reduce the frequency

of T2 or simply to slide T2 left so that the frequency of the following tasks’ T6 and/or T7 can



www.manaraa.com

102

be decreased instead. Choosing the second option has an additional advantage because if T2

propagates the slack by sliding left, the messages M1 and M2 which are produced by T2 also

get the slack (see fig 5.1.(a)). In the rest of the chapter, for each task, we denote the option

of using the slack for itself as its option zero and the option of propagating the slack further

as its option one. To decide whether T2 should choose option zero or one, we need to evaluate

the absolute energy reductions (or energy gains) that would be obtained by each of the two

options.

In order to capture these different options and estimate their energy gains, we introduce a

novel data structure called the slack propagation tree (SPT) where each message and task is

represented as a separate node in the tree.

5.3.3.1 Slack Propagation Tree (SPT) Construction

Whenever some dynamic slack is generated due to the early completion of a task Ti on

a processor Pj , the processor constructs the SPT with next(Ti) as the root and other local

tasks and locally originating messages that are yet to complete as the non-root tree nodes.

Consider the SPT shown in figure 5.6. This SPT is constructed to decide how to use the slack

generated by the early completion of task T1 in figure 5.5. Since the slack is generated on P2,

the SPT is constructed with all the tasks on P2 that are yet to complete (i.e, T2,T6,T7) and

their corresponding descendant messages that originate at P2 (i.e, M1, M2).

Two different kinds of edges are used in the SPT. The edges drawn with a label 0 denote

the option that the performance of the corresponding entity (from which the edge is drawn)

is scaled down and slack cannot be propagated further. Hence the tree terminates here along

that branch. On the other hand, edges drawn with a label 1 denote the option that the

corresponding entity (from which the edge is drawn) will propagate the slack further to its

following entities. In figure 5.6, As the slack can potentially be used to reduce the performance

level of any of the above tasks and messages after appropriate sliding, a 0-labeled edge is drawn

from each one of them to their respective leaf nodes. Whenever slack can be propagated from

one task to another and from one message to another, a 1-labeled edge is created as shown in

the figure. For example, by sliding T2 left the slack can be propagated to task T6 and message



www.manaraa.com

103

M1. Hence, 1-labeled edges are from T2 to T6 and T2 to M1. In the following, we denote the

leaf node of ek as φ0(ek) and the set of its 1-label child nodes as φ1(ek).

Figure 5.5 Illustrative example: online schedule

Figure 5.6 Slack Propagation Tree (SPT)

The SPT represents different possibilities via which the generated dynamic slack can be

utilized. A complete schedule can be obtained by choosing either option zero or option one for

each non-leaf internal node in the SPT. In order to make this choice at each node, we need to

evaluate the energy gains that would be obtained by each of the two possibilities. To this end,

we associate a tuple with each node in the SPT which consists of two elements namely, energy

gain and shift value. Energy gain of a node denotes the amount of energy reduction that would

be obtained by choosing the best option (either zero or one) at that node. The slack required

to achieve this amount of energy gain at that node is stored in the shift value of its tuple.

We denote the energy gain of a task Tk (message Mj) as g(Tk) (as g(Mj)) and the amount

of necessary shift as S(Tk) (as S(Mj)). For notational convenience, we denote S(C0(Tk)) as



www.manaraa.com

104

S0(Tk). Similarly, we denote S(C0(Mj)) as S0(Mk). In figure 5.6, the tuples for each node are

shown by their side. In the following, we present the tuple value calculation details for each

node in the SPT.

Tuple value calculations for leaf nodes: The gain value for a leaf node C0(ek) denotes the

amount of energy reduction that would be obtained by reducing the performance mode of ek

by one level. Mathematically, g0(ek) = E(ek, pα) − E(ek, pα−1) where pα denotes the current

performance level of ek. Accordingly, its shift value is calculated as, S0(ek) = T (ek, pα−1) −

T (ek, pα). If slack is propagated to ek and it chooses the option zero, its start time is shifted

to st(ek)−S0(ek) and its performance is reduced to pα−1 in the output schedule while leaving

its finish time unchanged. However, if est(ek) > st(ek)−S0(ek) both g0(ek) and S0(ek) are set

to zero and ek’s performance is not reduced in the output schedule.

Tuple value calculations for internal nodes: Consider the SPT in figure 5.6, to decide

whether T2 should choose option zero or one, we compare their corresponding energy gains,

g0(T2) and (g(M1) + g(T6)). The option which yields the maximum energy gain is chosen for

T2. In general the gain value of ek is calculated as: g(ek) = Max(g0(ek),
∑

∀ej∈φ1(ek) g(ej)). If

g0(ek) ≥
∑

∀ej∈φ1(ek) g(ej), S(ek) is set to S0(ek) and ek chooses option zero. Otherwise, S(ek)

is set to Max∀ej∈φ1(ek)(S(ej)) and ek chooses option one propagating slack further.

In either case, if the start time of entity ek cannot be shifted by S(ek) i.e, if ek fails the

conditions: est(ek) ≤ st(ek)−S(ek) its gain and shift values are set to zero and its schedule is

left unchanged. If ek passes this test, its start time and finish time are shifted to st(ek)−S(ek)

and ft(ek) − S(ek), respectively. We note that the above schedule modifications ensure that

the new finish times of the entities do not exceed their respective finish times in the input

schedule.

5.3.3.2 The DSP Algorithm

The DSP algorithm uses the SPT data structure to reduce the performance levels of the

tasks and messages using the dynamic slack. It proceeds in iterations updating the tuple values

of the SPT nodes in each iteration. The following step-by-step procedure outlines the DSP



www.manaraa.com

105

Iter-1 Iter-2 Iter-3 Iter-4 Iter-5

φ0(M1) 3107, 11 1700, 14 1700, 14 0, 0 0, 0

φ0(M2) 3107, 11 3107, 11 1700, 14 1700, 14 0, 0

φ0(T7) 5050, 50 0, 0 0, 0 0, 0 0, 0

φ0(T6) 0, 0 0, 0 0, 0 0, 0 0, 0

φ0(T2) 1830, 10 0, 0 0, 0 0, 0 0, 0

T6 5050, 50 0, 0 0, 0 0, 0 0, 0

M1 3107, 11 3107, 11 1700, 14 1700, 14 0, 0

T2 8157, 50 0, 0 0, 0 0, 0 0, 0

Table 5.1 Tuple values after each DSP iteration

Figure 5.7 Schedule after one traversal of SPT

algorithm which is run by each processor independently after recognizing some dynamic slack

in the schedule.

In figure 5.5, when T2 completes its execution at time 100ms generating a dynamic slack

of s = 50ms, processor P2 constructs the SPT shown in figure 5.6 and updates the ests

as follows: est(T2) = 100, est(T6) = 130 and est(T7) = 500 while their start times in the

current schedule are: st(T2) = 150, st(T6) = 180 and st(T7) = 550. Table 1 shows the tu-

ple values of different SPT nodes across different iterations. The tuple values for the first

iteration are shown in column 1. For example, the gain value of φ0(T7) is calculated as



www.manaraa.com

106

Input: Input Schedule, Hi

Output: Output Schedule, Ho

Construct the SPT including local tasks that are yet to1

complete and the messages these tasks produce;

Update the earliest start times of all the tasks and messages in2

the SPT;

Calculate the tuple values and determine the best option for3

each node in the SPT;

If there is any entity which yields non-zero energy gains proceed4

to the next step, otherwise exit the DSP algorithm;

Adjust the schedule according to the options chosen and go to5

step 3;

Algorithm 7: Gain based Static Scheduling Algorithm

E(T7, 400MHz) − E(T7, 300MHz) = 411 ∗ 150 − 283 ∗ 200 = 5050uJ and the shift value

is calculated as, T (T7, 300)−T (T7, 400) = 400
300150− 150 = 50ms. The tuple values of the other

SPT nodes are calculated in a similar fashion.

The resultant schedule after the first iteration is shown in figure 5.7. As there is more slack

for M1 and M2, at the end of iteration one they show non-zero energy gain values. As a result,

DSP proceeds for the next iteration and it terminates after four iterations when the energy

gain values of all the nodes reduce to zero. The tuple values for all the iterations are shown

in table 5.1. In the final schedule, M1 and M2 are assigned a modulation level of b = 8 while

rest of the schedule remains same as in figure 5.7. The energy reduction obtained by the DSP

algorithm can be easily calculated from the table 5.1, by adding the unique gain values for each

leaf node across several iterations which is 14664uJ (obtained as 2 ∗ 3107 + 2 ∗ 1700 + 5050).

The run-time of the DSP algorithm can be estimated as O(v2(kt +km)) where v denote the

number of tasks and messages allocated to the processor of interest. Further, as DSP ensures

that each entity in the schedule completes prior to is finish time in the input schedule, each node

can safely assume that remote tasks and incoming messages would complete latest by their

finish times in the input schedule and thereby, schedule the local tasks and outgoing messages

without affecting any precedence constraints. As the ready time and deadline constraints are

globally known and fixed parameters they are taken care trivially.



www.manaraa.com

107

5.4 Performance evaluation

We performed simulation studies to evaluate the relative performance of the proposed static

and dynamic scheduling algorithms. We considered a unit circular region with 15 nodes where

node locations are randomly chosen following an uniform distribution. The input schedule was

generated using a simplified version of the scheduling algorithm presented in [96] to obtain

a feasible schedule for randomly generated input task graphs. For each simulation run, we

generated 30 complex periodic tasks and the simulation was performed in the time window of

[0, 50 ∗ LCM ] where LCM is the least common multiple of the task periods. We varied the

following parameters: Channel bandwidth(W ), Slack factor (sf ) of a complex task defined as

deadline−wcet
Ttrans

where wcet denotes the worst-case execution time of the entire complex task in

the input schedule, BCET
WCET

: ratio of the best case sub-task execution time(BCET ) to worst

case sub-task execution time (WCET ). The actual execution time of each sub-task is chosen

randomly in the interval [BCET,WCET ].

The performance metric in our simulation studies is the normalized total energy consump-

tion of the schedule i.e, the total energy consumption of the schedule normalized with respect

to the energy consumption of the input schedule. We compared the following four algorithms

in our simulations: (1) Gain based computation only (comp-only) - variation of GSS where

only tasks are considered, (2) Gain based communication only (comm-only) - variation of GSS

where only messages are considered, (3) GSS, (4) DSP. Where the normalized energy consump-

tion denotes the total energy consumption of the schedule normalized with respect to that of

the input schedule.

Effect of channel bandwidth(W ): Figure 5.8 shows the relative performance of the four

schemes with varying channel bandwidth. The other parameters are chosen as: sf = 10, BCET
WCET

=

0.5. At high values of W , messages have significantly high energy gains i.e., reducing the mod-

ulation level of a message takes very less additional slack and yields high energy reductions. As

a result, GSS behaves very much like the comm-only scheme where slack is given only to the

messages. At W = 1000KHz, GSS shows an improvement of 70% over the comp-only scheme.

At low bandwidths like W = 1KHz, the message energy gains are comparable to that of the



www.manaraa.com

108

tasks and are sometimes even lower than that of the tasks. Hence the comp-only scheme per-

forms better than the comm-only scheme. Since GSS performs a system level slack allocation

considering both the tasks and messages it performs better than both the above schemes yield-

ing about 8% improvement over the comm-only scheme. Throughout, DSP performs better

than all the above schemes utilizing the dynamic slack in the schedule. At W = 1000KHz, it

shows an improvement of 15% over the GSS algorithm.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  200  400  600  800  1000

No
rm

ali
ze

d 
en

er
gy

 co
ns

um
pt

ion

Channel bandwidth (KHz)

Effect of channel bandwidth

Comp-only
Comm-only

GSS
DSP

Figure 5.8 Effect of channel bandwidth

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0  0.2  0.4  0.6  0.8  1

No
rm

ali
ze

d 
en

er
gy

 co
ns

um
pt

ion

BCET/WCET

Effect of BCET/WCET

Comp-only
Comm-only

GSS
DSP

Figure 5.9 Effect of BCET
WCET

at W = 1KHz

Effect of BCET
WCET

: Figures 5.9 and 5.10 show the relative performance of the above schemes

with varying BCET
WCET

at W = 1KHz (sf = 100) and W = 1000KHz (sf = 0.5) respectively.



www.manaraa.com

109

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

No
rm

ali
ze

d 
en

er
gy

 co
ns

um
pt

ion

BCET/WCET

Effect of BCET/WCET

Comp-only
Comm-only

GSS
DSP

Figure 5.10 Effect of BCET
WCET

at W = 1000KHz

In figure 5.9 with W = 1KHz, tasks offer energy gains comparable to that of messages and

sometimes offer even better energy gains. As a result, comp-only scheme performs better than

the comm-only scheme. The situation is exactly reversed at high bandwidths as shown in figure

5.10. In all the above scenarios, GSS allocates slack to the highest energy gain yielding entity

in the schedule and hence performs better than both the baseline algorithms. In figure 5.9, it

shows an average improvement of 15% over comm-only scheme while in figure 5.10, it shows an

average improvement of 45% over the comp-only scheme. DSP yields further energy savings

as shown in figure 5.10. It shows an improvement of 27% and 19% over the GSS algorithm at

BCET
WCET

= 0.2 and BCET
WCET

= 0.8, respectively.

Effect of slack factor (sf): Figure 5.11 shows the relative performance of the above scheme

with varying slack factor with W = 1000KHz and BCET/WCET = 0.5. At low sf , the

available slack is insufficient to perform any dynamic voltage scaling and hence comp-only

scheme does not show any improvements over the input schedule. On the other hand, as

the sf is increased the available slack is utilized for the tasks and hence comp-only scheme

shows an improvement of 6% over the input schedule at sf = 200. Throughout, GSS performs

better than both the baseline schemes and shows an improvement of about 50% and 10% over

the comp-only and comm-only schemes respectively. DSP uses the ample dynamic slack to

reduce the total energy consumption showing an additional improvement of about 15% over



www.manaraa.com

110

GSS at sf = 1.0. As the slack factor increases, most of the tasks and messages operate at low

performance levels subsequently, the energy reductions brought by the DSP diminish due to

the convex nature of the energy function.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  100  200  300  400  500

No
rm

ali
ze

d 
en

er
gy

 co
ns

um
pt

ion

Slack factor

Effect of slack

Comp-only
Comm-only

GSS
DSP

Figure 5.11 Effect of slack factor

5.5 Discussion

Recent technological advancements have opened up a plethora of real-time distributed

applications where battery-driven embedded devices with computation and wireless commu-

nication capabilities provide time-critical services. Energy management is the key issue in

the design and operation of such networked real-time embedded systems. In this chapter, we

addressed the problem of scheduling complex periodic tasks in a single-hop wireless networked

embedded system, where each node supports both DVS and DMS power management tech-

niques. We presented novel centralized static and distributed dynamic scheduling algorithms

to solve this problem. Starting with an input feasible schedule, the proposed algorithms per-

form slack allocation across tasks and messages with a system-level perspective. We performed

simulations to study the effectiveness of the proposed schemes. Our results show the proposed

schemes yield significant energy savings over the input schedule.



www.manaraa.com

111

CHAPTER 6. System level energy management in multi-hop networks

In this chapter, we consider a specific multi-hop networked embedded system and address

the end-to-end energy management problem taking into account both the computation and

communication workloads in the system.

Wireless sensor network is a well-known multi-hop networked embedded system where data

is monitored in a distributed manner and individual nodes collaborate to perform in-network

data aggregation by exchanging messages across several hops. In this chapter, we focus on the

end-to-end energy management of data aggregation in distributed wireless sensor networks.

Data aggregation is a fundamental task in sensor networks where energy management is a

primary concern. Majority of the existing work on data aggregation aims at minimizing the

communication energy consumption and ignores the computational workloads at the individual

nodes. With the growing complexity in the targeted applications, the computational demands

on the individual nodes are gradually increasing. For example, consider a military surveillance

application where the data has to be encrypted and communicated in a secure manner. In such

a scenario, each aggregating node need to perform data decryption and encryption to provide

the required security. The work in [98] presents different secure data aggregation schemes

where the primary focus is on the security issues.

On a different front, it is envisioned that the individual nodes in wireless sensor networks

support machine learning capabilities in the future to adapt to the environmental variations

where the individual nodes will be expected to execute heavier computational tasks. The work

in [99, 100] presents different machine learning schemes for the wireless sensor nodes.

With this impending trend, it becomes inevitable to consider both the computational and

communication energy consumptions at the individual nodes in order to perform effective end-



www.manaraa.com

112

to-end energy management for the data aggregation applications. In this chapter, we consider

both the processor energy consumption incurred due to the computational workloads along

with the communication energy consumption of each node in the network.

6.1 Related Work

Several power management techniques exist for processor and communication subsystems

which can be exploited while performing data aggregation for effective energy minimization.

For the processor, some of these techniques include: sleep-wakeup and performance scaling. For

the communication subsystem, these techniques include: sleep-wakeup [61], power adaptation

[62] and performance scaling [64]. In this chapter we focus on performance scaling techniques.

Performance scaling in processor energy management is often achieved by employing the

well-known dynamic voltage scaling (DVS) technique [10]. DVS is the technique of simulta-

neously varying the processor voltage and frequency as per the performance level required by

the tasks. It allows to tradeoff processor speed for energy savings. DVS has been extensively

applied to address a wide variety of task scheduling problems targeting stand-alone embed-

ded applications [80]. Majority of the proposed solutions in this context do not address the

communication aspects and hence are not directly applicable to the data aggregation problem

we addressed in this chapter. In the rest of the chapter, we refer to the processor frequency

simply as frequency which is different from the communication RF frequency.

Similar to the DVS in processor energy management, performance scaling in communication

energy management refers to the technique of lowering the transmission power and transmitting

the packet for a longer period of time to reduce the transmission energy consumption. This

technique allows to tradeoff transmission latency for communication energy savings. Such an

energy-time tradeoff can be achieved either by varying the modulation level or error correcting

codes or both simultaneously in a message transmission. These specific variations are termed as

Dynamic Modulation Scaling (DMS), Dynamic Code Scaling (DCS) and Dynamic Modulation-

Code Scaling (DMCS) respectively [65]. Although the specific variables or control knobs might

vary across the three techniques, the fundamental tradeoffs they offer are similar. In the rest



www.manaraa.com

113

of the chapter, we work with the DMS technique where modulation level of each message can

be varied to tradeoff transmission latency for energy savings.

Performance scaling for communication energy management has been applied in several

contexts including the download problem involving a single sender and multiple receivers and

the corresponding upload problem with single receiver and multiple senders [64, 67, 69, 66].

Majority of the above mentioned work applies communication performance scaling to different

single-hop scheduling problems which cannot be directly extended to the data aggregation

application which primarily is a multi-hop setup.

Further, most of the above existing work is based on the assumption that the transmission

energy consumption is a continuous function of transmission latency. However, in practical

systems only a few discrete performance levels are allowed and each transmission can be per-

formed at one of these levels. As a result, the solutions developed assuming a continuous

energy function merely represent lower bounds to the practical problem setups. Several chap-

ters suggest a simple rounding mechanism where the continuous solutions are rounded to the

nearest discrete solution taking a conservative approach [70]. However, such rounding mecha-

nism is not the optimal approach and hence cannot effectively reduce the energy consumption

particularly, when the number of discrete performance levels are few which is typically the case

in practical systems.

The most relevant work for the problem addressed in this chapter is presented in [70]. The

authors consider the energy minimization problem for a latency constrained data aggregation

application with DMS technique as the underlying power management mechanism. Their

model assumes that energy consumption is a continuous function of message modulation level

(or correspondingly message transmission latency). Further, the authors assume a collision-

free medium access which can be achieved either by employing multiple RF frequencies for

communication or other techniques like multiple packet reception (MPR) [101].

For the above ideal model where modulation can be varied continuously, the authors develop

numerical algorithms to solve the offline problem of scheduling messages at the individual

nodes with the aim of minimizing the total energy consumption while meeting the end-to-



www.manaraa.com

114

end latency constraint. The proposed solution exploits the continuous convex nature of the

problem and assigns modulation levels to different messages in the network. They also proposed

a dynamic programming based solution for the online version of the problem assuming a

continuous function for the transmission energy consumption. However, the presented solutions

are not effective for the practical scenarios where each node supports discrete modulation levels.

Moreover, as the authors pointed out in [70], the presented solutions in their work cannot be

extended to more general medium access channel setups like TDMA (Time Division Multiple

Access) or other contention-based protocols.

Our work differs from the existing work in the following ways.

• Unlike majority of the existing work which applies communication performance scaling

to single-hop setups [64, 67, 69, 66], we address the network-level problem of end-to-end

energy management considering the entire network with multiple hops.

• We consider a general communication model where all communications in the network are

performed using the same RF frequency. In such a model, different conflicting message

transmissions need to be scheduled.

• More importantly, we consider both computational and communication workloads at

the individual nodes in the network. Further, we consider performance scaling for both

processor and communication subsystems.

• Unlike the existing work, our primary focus is on the practical problem formulation

wherein each node supports discrete performance levels.

To the best of our knowledge, ours is the first work which applies performance scaling both

at the processor and communication level to the data aggregation problem considering the

end-to-end latency constraint.

The rest of the chapter is organized as follows: We present our system model in section

6.2. In section 6.3 we present analytical problem formulations for both the ideal and practical

performance scaling models. Further, we also prove that problem is NP-Hard for the practical



www.manaraa.com

115

model. In section 6.4, we first analyze system-level energy tradeoffs considering both compu-

tation and communication workloads at the individual nodes. We then present our scheduling

algorithms which apply the analyzed system-level tradeoffs. In sections 6.5 and 6.6, we present

our performance evaluation results and conclusions respectively.

6.2 System Model

Tree Model: We consider a data aggregation tree with V nodes. The root node is denoted as

v0 and the set of leaf nodes is denoted as Vl. Figure 6.1 outlines our model where each leaf node

performs local sensing, computation (e.g, data encryption) and communication (e.g, sends the

encrypted message to its parent). Each internal node performs local computation such as data

decryption, aggregation and encryption. It further communicates the aggregated message to

its parent. Similarly, the root node performs both local computation and communication to a

base station which is possibly connected to a wired network. We denote the local computation

at node vi as the task Ti and its outgoing message as Mi (see figure 6.1). The task execution

time and message sizes at node vi are denoted as Ci computation cycles and Li bits respectively.

For each node vi, we denote its set of child nodes as Vc(i). This set is empty for the leaf nodes.

Precedence constraints: Each node starts its local computation only after receiving all the

messages from its children. Similarly, each node begins its communication only after the local

task completes its execution and the message is ready for transmission.

End-to-end latency constraint: Each message that is generated at a leaf node should reach the

sink within a specified deadline, D. In other words, each leaf to root path has an end-to-end

latency constraint of D.

Performance Scaling Model: Each node supports DVS with λt discrete frequency levels

and DMS with λm discrete modulation levels. In the examples and simulation studies we use

the PXA255 processor’s power specifications [82] shown in table 6.1 to model the processor

energy consumption. For the ideal case, where we assume the processor can vary its frequency

continuously, we use the following expression to compute the processor energy consumption of

a task with C computation cycles when operated at a frequency f : βcCf2 [10]. Here βc is a



www.manaraa.com

116

constant.

Data Correlation Model: For each non-leaf node, we model the correlations among the data

collected from different child nodes as follows. Assuming each child node, vi sends a packet of

Li bits to its parent node vj, the outgoing message size at node vj is given by:

Lj =

∑
∀vi∈Vc(j)

Li

njβf − βf + 1
(6.1)

where βf is the correlation factor which varies in the range [0, 1] and nj denotes the number

of child nodes of vj . We note that βf = 0 corresponds to the case where there are no correlations

in the data. On the other hand, βf = 1 corresponds to the case of maximum data correlation.

We assume the task execution times are not affected by the data correlations.

Figure 6.1 Data Aggregation Tree Model

Scheduling Model: For each internal node, the set of corresponding child nodes share the

common wireless medium and their messages need to be scheduled in a non-conflicting manner.

The shared wireless medium is slotted in time and is accessed in an exclusive manner following a

TDMA protocol. We assume a feasible schedule is available where different messages and tasks

operate at the maximum performance levels. We refer to this schedule as the input/default



www.manaraa.com

117

Symbol Mode Power

fhigh 400 MHz 411 mW

fmid 300 MHz 283 mW

flow 200 MHz 175 mW

Idle 33MHz@Idle 45 mW

Table 6.1 Power specifications (from [82])

schedule.

Given such a feasible input schedule that satisfies precedence and end-to-end latency con-

straints, our primary focus is on assigning frequency and modulation levels to different tasks

and messages in the data aggregation tree, with the objective of reducing the total energy con-

sumption of the input schedule. This involves performing slack allocation across tasks and

messages without violating the precedence and end-to-end latency constraints.

In the rest of the chapter, we use the generic term performance level whenever we intend to

refer to either a task’s frequency level or a message’s modulation level. Similarly, we use the

generic term entity to refer to either a task or a message in the schedule. In these terms, our

goal is to assign appropriate performance levels to different entities in the input schedule with

the objective of minimizing the total energy consumption while not violating the deadline and

precedence guarantees provided by the input schedule.

Communication Model: We assume that the modulation is Quadrature Amplitude Mod-

ulation (QAM). The channels are modeled as frequency-flat Rayleigh fading. Let b denote

the number of bits per modulation constellation symbol. The constellation size is denoted as

M = 2b. Let Eb denote the received energy per bit, N0/2 denote the channel noise power

spectral density, Es denote the received energy per constellation symbol, d2
min is the minimum

average squared Euclidean distance between two constellation symbols at the receiver, and



www.manaraa.com

118

BER denote the bit error rate. We have the following relationships [97]:

b = log2 M (6.2)

BER ≈ N0/d
2
min (6.3)

d2
min =

6

M − 1
Es (6.4)

Es = bEb (6.5)

The approximation in (6.3) is valid for high signal-to-noise ratio (SNR). Combining these, we

have

Eb ≈
2b − 1

6b
·

N0

BER
. (6.6)

If a message contains L bits, then the total necessary received energy will be EL = L ·Eb. We

assume that the propagation loss follows a polynomial model: the power decays in the α-th

order of the distance:

Ets =

(
d

d0

)α

EL (6.7)

where Ets is the necessary transmitted energy to achieve a received energy of EL, d is the

distance between the transmitter and the receiver, d0 is a normalizing constant that depends

on the wavelength. Usually α is between 2 and 5. As a result, the total transmitted radio

energy can be expressed as

Ets =

(
d

d0

)α L(2b − 1)

6b
·

N0

BER
(6.8)

In addition to the Ets, some energy is consumed by the circuitry during the transmission

and reception which are given by: Etc = Lβt

b
and Erc = Lβr

b
, respectively; whereβt and βr are

implementation dependent constants[65]. In the rest of the chapter, we assume N0 = 4∗10−13J ,

BER = 10−6, βt = 75nJ , βr = 100nJ , L = 1024 as the default values. The channel bandwidth

in hertz is denoted with the symbol, W . The corresponding channel transmission rate in

bits/sec can be calculated as Wb. We assume that the BER is designed low enough to provide

the necessary message reliabilities. The time taken for transmitting a L-bit message in the

shared wireless medium is calculated as: L
Wb

.

Notations: We use the following symbols in the rest of the chapter.



www.manaraa.com

119

• v0: root node in the data aggregation tree.

• Vl: set of leaf nodes in the data aggregation tree.

• Ti: task at node vi.

• Mi: message at node vi.

• Li: message size at node vi in bits.

• Ci: task size at node vi in computation cycles.

• xi: modulation level assigned to Mi.

• yi: frequency level assigned to Ti.

• St
i : start time of the task Ti in the schedule.

• Sm
i : start time of the message Mi in the schedule.

• prev(Mi): The message which is scheduled just before the message Mi in the input

schedule. In figure 6.4, prev(MD) = MC .

• next(Mi): The message which is scheduled just after the message Mi in the input sched-

ule. In figure 6.4, next(MC) = MD.

• t(ei): Time taken by the entity ei at its current performance level in the schedule.

• t(Ti): Time taken by the task Ti at its current frequency level in the schedule.

• t(Mi): Time taken by the message Mi at its current modulation level in the schedule.

• pi: parent node of node vi.

• di: normalized distance between the nodes vi and pi.

• Vc(i): set of child nodes of node vi.

• D: end-to-end deadline (latency constraint)

6.3 Problem Formulation

Given a data aggregation tree and an input schedule, the problem is to assign performance

levels to each of the entities in the schedule with the objective of minimizing the total en-

ergy consumption while guaranteeing the precedence and end-to-end latency constraints. We



www.manaraa.com

120

address the above problem for the following two models. For each model, we present the

corresponding analytical formulations.

• Ideal model: In the ideal model, the processor frequencies can be varied continuously

within the specified range. Similarly, the modulation levels of each message can be scaled

continuously. We use the variables xi and yi to denote modulation level of message Mi

and frequency of task Ti, respectively.

• Practical model: In this model, each node in the network supports only a few discrete

frequency and modulation levels. Specifically, we assume each node provides λt discrete

frequency levels and λm modulation levels. Further, we denote the kth frequency level

and its corresponding power consumption with fk and Pk respectively, wherek ∈ [1, λt].

Similarly, the kth modulation level is denoted as bk where k ∈ [1, λm].

6.3.1 Problem formulation: Ideal model

The above stated problem can be mathematically formulated for the ideal model as follows.

Minimize:

Etotal =
∑

vi∈V

(
LiN0

6BER

2xi − 1

xi
d2

i +
Li(βt + βr)

xi
) +

∑

vi∈V

βcCiy
2
i (6.9)

Subject to:

xmin ≤ xi ≤ xmax (6.10)

ymin ≤ yi ≤ ymax (6.11)

Sm
j +

Lj

Wxj
− St

i ≤ 0,∀vj ∈ Vc(i) (6.12)

St
i +

Ci

yi
− Sm

i ≤ 0,∀vi ∈ V (6.13)

Sm
j +

Lj

Wxj
− Sm

i ≤ 0, vj = prev(Mi) (6.14)



www.manaraa.com

121

St
i ≥ 0,∀vi ∈ Vl (6.15)

Sm
0 +

L0

Wx0
≤ D (6.16)

The above formulation accepts an input schedule and assigns the start times (variables St
i

and Sm
i ) and performance levels (variables xi and yi) to different tasks and messages with

the objective of minimizing the total energy consumption while preserving the precedence and

latency constraints guaranteed by the input schedule.

The first term of the objective function given in (6.9) totals the communication energy

of all the messages while the second term totals the computation energy of all the tasks in

the schedule. Further, the constraints in (6.10)-(6.11) ensure that the performance levels are

maintained with in the specified range.

The remaining equations capture the ready time, deadline and precedence constraints. The

constraint in (6.12) ensures that the task at each node in the network starts after it receives all

the messages from its children. Similarly, the constraint in (6.13) ensures that each message is

transmitted only after the local task has finished its execution. The constraint in (6.14) ensures

that each message starts after its previous message finishes its transmission in the schedule.

The constraints in (6.15) specify that the start times of tasks at the leaf nodes should be

greater than time zero and finally, the equation (6.16) ensures that the root node completes

the its message transmission before the end-to-end deadline D.

Assuming the variables xi and yi can be varied continuously, the objective function Etotal

can be proved to be a convex function as it is a sum of several convex functions. Moreover,

the constraints in (6.11)-(6.16) are also convex in the variables xi and yi. Also, the variables

St
i and Sm

i are continuous and linear in these constraints. As a result, the above problem

formulation depicts a convex optimization problem and standard convex optimization tools

can be applied to solve the above problem. However, the obtained solution cannot be directly

applied to the practical model without losing the optimality. In the following, we address the

practical problem where each node supports discrete performance levels.



www.manaraa.com

122

6.3.2 Problem Formulation: Practical Model

In this section, we first prove that the scheduling problem for the practical model is NP-

Hard. Then, we present a Mixed Integer Linear Programming (MILP) formulation to solve

the problem optimally.

NP-Hard proof: Optimally solving the problem of assigning performance levels to messages

and tasks of the data aggregation application for the practical model is NP-Hard. We prove this

by reducing the well-known Multiple Choice Knapsack Problem (MCKP) [72] to the problem

at hand. The MCKP problem is stated as follows.

Multiple Choice Knapsack Problem : Given λ classes N1, ...Nλ of items to pack in a knapsack

of capacity c. Each item Oij ∈ Ni has a profit pij and weight wij . The problem is to choose

one item from each class such that the profit sum is maximized without having the weight sum

to exceed c.

The MCKP can be mathematically expressed as follows:

Maximize λ∑

i=1

∑

j∈Ni

pijzij

Subject to: λ∑

i=1

∑

j∈Ni

wijzij ≤ c

∑

j∈Ni

zij = 1

zij ∈ {0, 1}

Theorem: The scheduling problem of assigning performance levels to different tasks and

messages in the data aggregation tree to optimally minimize the total energy consumption of

the input schedule while meeting the precedence and end-to-end latency constraints is NP-

Hard.

Proof: For the convenience of reduction, we rewrite the maximization objective of the MCKP

as the following minimization objective:
∑λ

i=1

∑
j∈Ni

(1 − pij)zij .



www.manaraa.com

123

The above presented MCKP problem can be reduced to an instance of the scheduling

problem at hand where the data aggregation tree has a root and a collection of leaf nodes

connected directly to the root. Further, we assume the leaf nodes have no local computation

to perform in this instance i.e, Ci = 0, ∀vi ∈ Vl. The reduction proceeds as follows.

• Tree construction: Create a root node with a local task (T0) and message (M0). Associate

the classes N1 and N2 to T0 and M0, respectively. Construct (λ−2) leaf nodes, all directly

connected to the root node. Denote the message at leaf node, vi as Mi. Associate the

class N2+i to the message Mi.

• Object to task mapping at the root: Considering the task T0 and its associated class N1,

set the number of frequency levels at which T0 can operate as the number of objects in

the class N1. Now, each object in the class N1 corresponds to the execution of the task

T0 at a unique frequency. In other words, by selecting a frequency for the task T0 an

object from the class is correspondingly selected and viceversa. Now, set the execution

time of the task T0 at the jth frequency to be w1j. Similarly, set the energy consumption

of T0 when operated at jth frequency level to be (1 − p1j).

• Object to message mapping at the root: Considering the task M0 and its associated class

N2, set the number of modulation levels at which M0 can operate as the number of objects

in the class N2. Now, each object in the class N2 corresponds to the transmission of the

message M0 at a unique modulation level. In other words, by selecting a modulation

level for the task M0 an object from the class is correspondingly selected and viceversa.

Now, set the transmission time of the message M0 at the jth modulation level to be w2j .

Similarly, set the energy consumption of M0 when transmitted at jth modulation level

to be (1 − p2j).

• Object to message mapping at the leaf nodes: Now, establish a similar mapping from

message Mi to the class N2+i. Therefore, we have the transmission time of Mi at jth

modulation level equal to w2+i,j and corresponding energy consumption is (1 − p2+i,j).

With this mapping the total energy consumption of all the messages and tasks in the

constructed data aggregation tree is given by,
∑λ

i=1

∑
j∈Ni

(1−pi,jzij). Here the binary variable



www.manaraa.com

124

zij denotes which performance level if chosen for the corresponding entity. By setting D = c,

we have the end-to-end latency constraint as:
∑λ

i=1

∑
j∈Ni

wijzij ≤ D.

Now the instance of the data aggregation problem constructed above has a one-to-one

correspondence with the MCKP problem. This reduction takes O(
∑λ

i=1 | Ni |) amount of time

which is clearly a polynomial of the problem size. This implies that if the scheduling problem

can be solved in polynomial time, then the MCKP can also be solved in polynomial time.

However, it is known that the MCKP problem is NP-Hard [72]. Therefore, the scheduling

problem is also NP-Hard.

6.3.2.1 MILP Formulation

We now present an MILP formulation for the data aggregation scheduling problem with

tasks and messages. The formulation presented below uses the following variables: St
i , S

m
i ,Xij , Yij .

The real variables St
i , S

m
i denote the start times of task Ti and message Mi respectively. The

integer (binary) variables Xij and Yij denote the performance level chosen for the task Ti and

message Mi, respectively. Specifically, the variable Xij is set to one if jth modulation level is

assigned to message Mi, otherwise it is set to zero. Similarly, the variable Yij is set to one if

jth frequency level is assigned to message Ti, otherwise it is set to zero.

The following MILP formulation optimally minimizes the total energy consumption of the

input schedule while meeting the precedence and end-to-end latency constraints. The objective

function in (6.17) sums up the energy consumptions for all messages and tasks in the network

and is similar to (6.9). The constraints in (6.18)-(6.22) represent different precedence, ready

time and deadline constraints and are similar to (6.12)-(6.16). The constraints in (6.23) and

(6.24) ensure that only one performance level is assigned to each message and task in the

schedule.

Minimize:

∑

vi∈V

λm∑

k=1

(
LiN0d

2
i

6BER

2bk − 1

bk

+
Li(βt + βr)

bk

)Xik +
∑

vi∈V

λt∑

k=1

βcPk
Ci

fk

Yik (6.17)



www.manaraa.com

125

Subject to:

Sm
j +

λm∑

k=1

Lj

Wbk

Xjk − St
i ≤ 0,∀vj ∈ Vc(i) (6.18)

St
i +

λt∑

k=1

Ci

fk

Yik − Sm
i ≤ 0,∀vi ∈ V (6.19)

Sm
j +

λm∑

k=1

Lj

Wbk

Xjk − Sm
i ≤ 0, vj = prev(Mi) (6.20)

St
i ≥ 0,∀i ∈ Vl (6.21)

Sm
0 +

λm∑

k=1

L0

Wbk

X0k ≤ D (6.22)

λt∑

k=1

Yik = 1,∀vi ∈ V (6.23)

λm∑

k=1

Xik = 1,∀vi ∈ V (6.24)

Xik, Yik ∈ {0, 1}∀i, k (6.25)

6.4 Energy-Aware Scheduling Algorithms

Although the above presented MILP formulation solves the problem optimally, it can take

exponential amount of time demanding excessively high memory and computational resources

for reasonably large problem sizes. Therefore, in this section we present heuristic scheduling

algorithms which run in polynomial time.

In the following, first we analyze the system-level energy-time tradeoffs by defining a novel

metric called normalized energy gain. We then present two efficient algorithms which employ

the energy gain metric.



www.manaraa.com

126

6.4.1 System Level Energy-Time Tradeoffs

In the input schedule of the data aggregation tree, each entity is assigned the highest

performance level. The objective of the energy-aware scheduling algorithms is to assign as low

performance level as possible to each entity (message or task) without violating the precedence

and end-to-end latency constraints. Assigning performance levels corresponds to allocating the

available slack across different entities in the schedule.

In order to effectively reduce the total energy consumption, a good slack allocation strategy

would allocate slack to the entity which results in maximum energy reduction for every addi-

tional unit of slack allocated to it. To determine the best entity for slack allocation, we define

the following metric called normalized energy gain (or simply energy gain) for each entity as

follows:

G(k, k − 1) =
Ek − Ek−1

t̂k−1 − t̂k
(6.26)

where Ek and t̂k respectively denote the energy consumption and time incurred by the

entity when operated at kth performance level. For each entity ej which is currently assigned

the kth performance level, G(k, k − 1) represents the energy reduction that would be obtained

by reducing its performance level to k − 1 normalized with respect to the additional time

incurred for operating it at performance level k − 1 instead of level k. The energy gain metric

succinctly captures how effectively a given amount of slack is utilized by each entity and ideally

slack should be allocated to the entity which offers highest normalized energy gain.

Figure 6.2 shows the normalized energy gain for the messages as a function of k (modulation

level) for different values of W and d with message size L = 1. It also shows the DVS energy

gains (horizontal lines) offered by a task of size C = 1 for the PXA255 processor settings. The

following two important observations can be made from the figure.

1. As we decrease the performance level, the subsequent energy gains obtained are decreas-

ing both for the messages and tasks as shown in the figure. For example, the energy

gain obtained by reducing the CPU frequency from 300MHz to 200MHz is lower than

that obtained by reducing the frequency from 400MHz to 300MHz. Similarly, for a



www.manaraa.com

127

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10

E
ne

rg
y 

ga
in

: G
ai

n(
i,i

-1
),(

jo
ul

es
/s

ec
)

Modulation level(i)

System level energy-time tradeoffs

(CPU:400MHz -> 300MHz)

(CPU:300MHz -> 200MHz)

(b=10->b=9)

(b=9->b=8)

(b=3->b=2)

Comm(w=2KHz,d=1)
Comm(w=1KHz,d=1)

Comm(w=1KHz,d=0.5)

Figure 6.2 System level energy-time tradeoffs

given W and d, we have G(k + 1, k) > G(k, k − 1). This trend suggests that we should

allocate slack incrementally across messages and tasks keeping track of the decreasing

energy gain values.

2. The energy consumption of message transmission is in general higher than that of com-

putation and it may appear on the surface that the slack should be entirely allocated to

the messages. However, from the figure 6.2 we can see that the exact energy gains depend

upon several parameters like W , d, the current modulation level of the message and the

current frequency level of the task. For example, in the figure considering the curve with

W = 1KHz and d = 1, we have G(k = 8, k = 7) < G(400MHz, 300MHz) where as

G(k = 9, k = 8) > G(400MHz, 300MHz). This suggests that there are situations (spe-

cific values of W and d) where slack should be allocated to tasks rather than messages.

For the cases, where the message energy gains are higher than the task energy gains, the

energy gain metric helps comparing the energy reductions offered by each message and

guides the slack allocation across different messages.

We have applied the above energy gain metric for a different scheduling problem for a

single-hop network model in our recent work [102]. In this chapter, we apply these techniques

to the data aggregation problem.



www.manaraa.com

128

The above energy gain metric helps in choosing the best entity in the schedule for per-

forming slack allocation. In order to ensure such slack allocation preserves the constraints

satisfied by the input schedule, we first estimate the maximum safe slack for each entity prior

to allocating any slack to it. Then, all slack allocations are performed without exceeding the

corresponding maximum slack limit.

The maximum safe slack for each entity, ei in the schedule is calculated based on its latest

start time lst(ei) and earliest start time est(ei). The latest start time of ei is defined as the

latest time by which the entity ei can start in the schedule without violating any constraints.

Similarly, the earliest start time of ei is defined as the earliest time by which ei can start

without violating any constraints in the schedule. For a message Mi, its latest and earliest

start times are calculated as follows:

lst(Mi) = min{lst(next(Mi)), lst(Tpi
)} − t(Mi) (6.27)

est(Mi) = max{(est(Ti) + t(Ti), (est(prev(Mi)) + t(prev(Mi))} (6.28)

Similarly, the latest and earliest start times of a task, Ti are calculated as follows:

lst(Ti) = lst(Mi) − t(Ti) (6.29)

est(Ti) = max
vj∈Vc(i)

{est(Mj) + t(Mj)} (6.30)

Finally, the maximum available safe slack for each entity ei can be calculated as follows.

Smax = lst(ei) − est(ei) − t(ei) (6.31)

In the following, we present an example to illustrate the shortcomings of the default input

schedule and the working of a straight forward slack allocation scheme. In the subsequent

sections, we use the same example to demonstrate the working of the gain based scheduling

algorithms.



www.manaraa.com

129

6.4.2 Illustrative Example

Consider the simple data aggregation tree shown in figure 6.3. The numbers on the edges

denote the normalized distance between the corresponding nodes. We assume a 100% data

correlation i.e, βf = 1 in this example. In the given tree, we have four messages namely,

ME ,MC ,MD,MB where each message Mi originates at node i. Similarly, there are three

aggregation tasks in the system namely, TA, TB , TD. To keep the example simple we ignore

other entities (MA, TC , TE) in the discussion. Each message is of size L = 1024 bits and each

task is of size C = 103 computation cycles. The channel bandwidth, W = 1MHz.

Figure 6.3 Illustrative example: Data aggregation tree

The input schedule for the data aggregation with an end-to-end deadline equal to 370µs

is shown in figure 6.4. In the schedule, all the computation is shown at one place for brevity.

The above input schedule operates each entity at its highest performance level while leaving a

significant amount of slack unused (from time 318 to 370 in the figure).

Now, consider a straightforward greedy slack allocation scheme which allocates such unuti-

lized slack to the highest energy consuming entity in the schedule. In the above example,

messages MD and MB incur the highest energy consumption. The greedy slack allocation

scheme arbitrarily chooses message MB and allocates as much slack as possible to it. As a

result the modulation level of MB is reduced from 10 to 7 as shown in figure 6.5. Further, the

left over slack cannot be utilized by any of the messages. As a result the frequency levels of

all the tasks are reduced to 200 MHz. With this slack allocation, the greedy scheme reduces

the energy consumption of MB by 5745.15µJ (obtained using equation 6.7) and that of each



www.manaraa.com

130

Figure 6.4 Illustrative example: Input schedule (Total energy consumption

= 18.99mJ)

task by 2.625µJ (obtained using table 6.1) which corresponds to a total energy reduction of

about 5747.78µJ . In the following, we present gain based scheduling algorithms which apply

the notion of energy gain to achieve much better energy savings.

6.4.3 Gain based Scheduling Algorithm (GSA)

We now present the gain based scheduling algorithm which assigns performance levels to

each entity in the data aggregation tree while respecting the different constraints provided by

the input schedule. The GSA algorithm proceeds in iterations allocating slack in an incremental

fashion. In each iteration, the highest energy gain yielding entity is chosen and it is allocated

just enough slack to reduce its performance mode by one level. The rest of the slack is allocated

similarly to the remaining entities in the schedule. At the end of each iteration, the individual

energy gain values are updated.

In order to keep track of the messages which can utilize more slack without affecting any

constraints, the GSA algorithm maintains a set Q and updates it after each iteration. The

algorithm terminates once the set Q becomes empty. The pseudocode for GSA is presented in

Algorithm 8. It accepts an energy-unaware feasible schedule as input and outputs an energy-

aware schedule where each task is assigned an operating frequency and each message is assigned



www.manaraa.com

131

Figure 6.5 Illustrative example: Greedy slack allocation schedule (Total

energy consumption = 13.25mJ)

a modulation level. In step 2, all the messages and tasks are added in a set Q. At any point

of time, the set Q contains all the messages and tasks that can accept more slack without

violating deadline and precedence constraints. In step 4, the highest energy gain yielding

entity is chosen from Q. In step 5 the maximum available slack for this message is determined.

In step 6, the amount of slack necessary for reducing the chosen entity by one performance

level is determined. If this slack is less than the available slack then its performance level is

decreased by one level in step 8. Otherwise, the entity is removed from Q in step 12 as its

performance level cannot be reduced further.

The worst-case computational complexity of the GSA algorithm can be derived as O((n +

m)(nλt + mλm)) where n and m respectively denote the number of tasks and messages in the

schedule.

Consider the initial schedule shown in figure 6.4. Applying the GSA algorithm, the highest

energy gain yielding message MB is picked which has an energy gain of 272.6 joules per second

(obtained using equation 6.26). Consequently, the modulation level of MB is reduced by

one level. As there is more slack available, in the subsequent steps the modulation levels of

MD,MB and MD are reduced by one level in that order. The final GSA schedule is shown

in figure 6.6. The total energy reduction obtained by the GSA schedule can be calculated as



www.manaraa.com

132

Input: Input Schedule, Hi

Output: Output Schedule, Ho

Set Ho = Hi;1

Q : Set of all tasks and messages in Hi;2

while Q 6= ∅ do3

Pick up the highest energy gain yielding entity ei from Q;4

Determine the maximum slack, Smax available for ei5

using equation 6.31;

Let s be the time required to operate ei at its next lower6

performance level;

if s ≤ Smax then7

Decrement the performance level of ei by one level;8

Update the schedule Ho;9

end10

else11

Remove ei from Q;12

end13

end14

Algorithm 8: Gain based Scheduling Algorithm

4807.7∗2 = 9615.4µJ . In this example, GSA outperforms the greedy scheme by offering much

higher energy savings.

6.4.4 Extended Gain based Scheduling Algorithm (EGSA)

Although the above presented gain based algorithm effectively reduces the energy consump-

tion by employing the notion of energy gain, it does not exploit the parallelism offered by the

tree structure of the data aggregation application. We now present the extended gain based

scheduling algorithm which uses GSA as a subroutine and exploits the parallelism offered by

the tree structure.

Consider the scenario shown in figure 6.7.(a), where message Mi is the highest energy gain

entity in the schedule and it requires ∆t additional amount of time to reduce its modulation

by one level. The messages prev(Mi) and Mj where vj ∈ Vc(i) are transmitted parallelly as

their transmissions do not interfere with each other. Further, both the transmissions need to

finish before Mi starts.



www.manaraa.com

133

Figure 6.6 Illustrative example: GSA schedule (Total energy consumption

= 9.38mJ)

At this point, GSA would allocate the ∆t slack to message, Mi and reduce its modulation

by one level resulting in a schedule shown in figure 6.7.(b). Let ∆E1 denote the obtained

energy reduction.

Now, consider an alternative where the modulation level of Mi is not reduced and the

available slack ∆t is utilized by both prev(Mi) and Mj simultaneously as shown in figure

6.7.(c). This is possible due to the tree structure which allows both the descendants and

siblings of a node to transmit parallelly. Let the energy reductions obtained by prev(Mi) and

Mj using no more than ∆t additional slack be ∆E2 and ∆E3, respectively. Therefore, the

total energy reduction obtained in this case is equal to ∆E2 + ∆E3.

Although, ∆E1 > ∆E2 and ∆E1 > ∆E3, it is possible that ∆E1 < ∆E2 + ∆E3 in which

case allocating slack to prev(Mi) and Mj is beneficial. This is the basic idea behind the

extended gain based scheduling algorithm. It starts with a schedule produced by the GSA

algorithm and for each message Mi, it evaluates the alternative where some of the Mi’s slack

could be simultaneously allocated to prev(Mi) and descendant entities of node i (e.g., Mj in

the above discussion). Based on the evaluation, it produces a schedule which yields highest

energy reductions.

In this example, EGSA would verify if (∆E1 < ∆E2 + ∆E3). If the condition is satisfied,



www.manaraa.com

134

Figure 6.7 EGSA: Motivational example

it would follow the schedule shown in figure 6.7.(c) otherwise, it would stick with the GSA’s

schedule shown in figure 6.7.(b).

The pseudocode for the EGSA algorithm is presented in Algorithm 9. It uses the following

terms:

• DS(i): It is the descendant set of node vi which consists of the task Ti and all the

messages and tasks that belong to the descendant nodes of vi in the aggregation tree.

• g(Γ,∆t): It is the amount of energy reduction that would be obtained by applying the

GSA algorithm on the entities in the Γ set to utilize the available slack, ∆t. Specifically,

it denotes the amount of energy reduction that would be obtained by invoking GSA and

further restricting slack allocation to the entities in the Γ set. This can be accomplished

by setting Q equal to Γ in step 2 of Algorithm 8.

• Extended Gain EG(Mi,∆t): It denotes the maximum of the energy reductions that would

be obtained by each of the following two options: (1) allocating slack to Mi i.e, follow-

ing the GSA schedule itself (evaluated as g(Mi,∆t)), (2) allocating slack to prev(Mi)

and the entities in DS(i) simultaneously (evaluated as g(prev(Mi),∆t) + g(DS(i),∆t)).

Mathematically,



www.manaraa.com

135

EG(Mi,∆t) = Max{g(Mi,∆t), g(prev(Mi),∆t) + g(DS(i),∆t)} (6.32)

Input: GSA’s output Schedule, Hg

Output: Output Schedule, Ho

Set Ho = Hi;1

Q : Set of all messages in Hg;2

while Q 6= ∅ do3

Pick up the message (Mi) operating at the least4

modulation level (say, bi) from Q;

if(bi == bmax) Remove Mi from Q and continue;5

Calculate ∆t = Li

Wbi
− Li

W (bi+1) ;6

Increment Mi’s modulation level to bi + 1;7

Calculate δ = EG(Mi,∆t) using eq. (6.32);8

if δ > GSA(Mi,∆t) then9

Update the schedule Ho accordingly, as per the10

choices made in the δ calculation;
end11

else12

Decrement Mi’s modulation level to bi − 1;13

Remove Mi from Q;14

end15

end16

Algorithm 9: Extended Gain based Scheduling Algo-

rithm (EGSA)

The EGSA algorithm proceeds as follows. It iterates over the messages in the set Q. In step

4, the message Mi with the least modulation level is chosen. This choice is motivated by the fact

that it generates the maximum slack and incurs least energy consumption when its modulation

is increased by one level. In step 5, it is verified if the modulation of Mi can be increased. If

the test fails, this message is removed from the Q and the algorithm continues with the other

messages in Q. In step 6, the amount of generated slack is calculated and Mi’s modulation

is increased by one level in the following step. Step 7 evaluates the different alternatives and

calculates the best energy reduction that can be obtained using equation (6.32). If the obtained

energy reductions are greater than what would be obtained by retaining the slack with Mi then



www.manaraa.com

136

the schedule is updated appropriately in step 10. Otherwise, the modulation of Mi is increased

back to it original value and it is removed from the Q in steps 13 and 14.

The worst-case complexity of the algorithm can be estimated as O(n2λm) as each message

is explored at most λm times and for each exploration the whole tree is explored in the worst

case.

6.5 Performance Evaluation

We evaluated the performance of the proposed scheduling algorithms against the optimal

solution obtained by solving the MILP presented in section 6.3.2.1. We used the ILOG CPLEX

10.100 software [74] to solve the MILP. We randomly generated a data aggregation tree with

100 nodes following the PTC2 tree generation algorithm presented in [103]. We assume a

communication radius of 40m. The distances between a parent and each of its child are

randomly generated between [0.05 ∗ 40, Rf ∗ 40] following a uniform distribution. Here Rf

is the radius factor and is varied to study both short-range and long-range communication

scenarios. In addition, we varied the following parameters: channel bandwidth (W ) in hertz,

data correlation factor (βf ), computational work load i.e, CPU cycles (C) per task, slack factor

(Sf =
D−tf

D
where D is the deadline and tf is the finish time of the input schedule where no

performance scaling is performed. For each parameter set of interest, we performed 20 different

runs each with a different random number seed and the obtained average is plotted as a single

point in the graph. The communication from different child nodes to their parent is scheduled

following a FCFS (first-come-first-serve) scheduling policy and the obtained schedule serves as

the input to the above presented algorithms.

The performance metric in our simulation studies is the normalized total energy consump-

tion of the schedule i.e, the total energy consumption of the schedule normalized with respect

to the energy consumption of the input schedule. We compared the performance of the fol-

lowing algorithms in our studies: (1) Gain based computation only (comp-only) - variation

of GSA where only tasks are considered, (2) Gain based communication only (comm-only) -

variation of GSA where only messages are considered, (3) Greedy, (4) GSA, (5) EGSA and (6)



www.manaraa.com

137

MILP. In the following we present two sets of results. In the first set, we assume W = 1KHz

(low bandwidth) and for the second we set W = 1000KHz (high bandwidth).

6.5.1 Results for low bandwidth conditions

Effect of radius factor (Rf): Figure 6.8 shows the relative performance of the above schemes

by varying the radius factor. The other parameters are chosen as: sf = 1.0, C = 106, βf = 1.0.

With increasing Rf , the total energy consumption increases as the messages now have to be

communicated over a longer range. However, the increase in the total energy consumption of

the different schemes which employ DMS is much smaller than that of the input schedule where

no performance scaling is performed. As a result, the normalized energy consumption values

appear to be decreasing. As the comp-only scheme does not employ any message scaling its

normalized energy consumption increases as expected. At low values of Rf , the computation

energy dominates the communication energy for the chosen parameters. Therefore, it is very

important to allocate the available slack to tasks rather than messages. Consequently, comp-

only scheme performs better than the comm-only scheme in the range Rf ∈ [0.05, 0.20] showing

a maximum improvement of 14% over the comm-only scheme. As the communication range is

increased, the communication energy and the benefits offered by scaling the messages increase

as a result the comm-only scheme performs better than comm-only after Rf = 0.20. Although

the greedy scheme considers both tasks and messages, due to its aggressive nature of slack

allocation it performs worse than the comm-only scheme after Rf = 0.3. Throughout the

range, both the GSA and EGSA perform better than the comp-only, comm-only and greedy

schemes and offer a performance comparable to the MILP. At Rf = 0.20 both GSA and

EGSA incur as small as 2.6% more energy than the MILP. Further, EGSA yields an average

improvement of about 15% over the GSA scheme.

Effect of computational workload (C): Figure 6.9 shows the relative performance of the

above schemes by varying the number of CPU cycles per task. The other parameters are chosen

as: Rf = 0.1, sf = 0.5, βf = 1.0. For a given slack factor, with increasing C the total energy

consumption increases due to increase in the workload and decrease in the available slack for



www.manaraa.com

138

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

No
rm

ali
ze

d 
en

er
gy

 co
ns

um
pt

ion

Radius factor (Rf)

Effect of communication range

Comp-only
Comm-only

Greedy
GSA

EGSA
MILP

Figure 6.8 Effect of radius factor (Rf )

performance scaling. All the schemes show this trend in the figure. Also, the computation

energy dominates the communication energy as result with increasing C. As a result, the comp-

only scheme performs better than the comm-only scheme showing an average improvement of

8% over the comm-only scheme. Throughout the range, both the GSA and EGSA perform

better than the comp-only, comm-only and greedy schemes and offer a performance comparable

to the MILP. At C = 2 ∗ 105 and C = 6 ∗ 105 EGSA respectively incurs as small as 6.6% and

4.8% more energy than the MILP. Further, EGSA yields an improvement of about 14% over

the Greedy scheme at C = 105. At low values of C the gain based scheme utilizes the ample

slack to reduce the modulation level of the highest gain message in an aggressive manner. On

the other hand, the EGSA scheme converts such aggressive slack allocations by employing

better slack allocation strategy as a result, it offers better performance at low values of C.

6.5.2 Results for high bandwidth conditions

Effect of radius factor (Rf): Figure 6.10 shows the relative performance of the above

schemes by varying the radius factor. The other parameters are chosen as: sf = 0.5, C =

106, βf = 0.5. The plot follows a similar trend depicted in figure 6.8. Throughout the range,

both the GSA and EGSA perform better than the comp-only, comm-only and greedy schemes

and offer a performance comparable to the MILP. At Rf = 0.10 and Rf = 0.80 EGSA respec-



www.manaraa.com

139

 1

 100000  1e+06  1e+07

No
rm

ali
ze

d 
en

er
gy

 co
ns

um
pt

ion

Number of CPU cycles per task

Effect of computation load

Comp-only
Comm-only

Greedy
GSA

EGSA
MILP

Figure 6.9 Effect of computational workload (C)

tively incurs as small as 5.8% and 4% more energy than the MILP.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

No
rm

ali
ze

d 
en

er
gy

 co
ns

um
pt

ion

Radius factor (Rf)

Effect of communication radius

Comp-only
Comm-only

Greedy
GSA

EGSA
MILP

Figure 6.10 Effect of radius factor (Rf )

Effect of slack factor (Sf): Figure 6.11 shows the relative performance of the above schemes

by varying the slack factor. The other parameters are chosen as: Rf = 1.0, C = 106, βf = 0.5.

The total energy consumption of the different schemes decrease with increasing Sf due to the

increased opportunity for performance scaling. All the schemes show this trend in the fig-

ure. For high bandwidth and long range scenarios considered here, the communication energy

heavily dominates the computation energy and hence comm-only scheme gives a performance

close to that of GSA and EGSA. The comp-only scheme shows poor performance for the same



www.manaraa.com

140

reason. In the figure, EGSA shows as much as 80% improvement over the comp-only scheme

and incurs about 12% more energy than the MILP.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

No
rm

ali
ze

d 
en

er
gy

 co
ns

um
pt

ion

Slack factor (Sf)

Effect of slack factor

Comp-only
Comm-only

Greedy
GSA

EGSA
MILP

Figure 6.11 Effect of slack factor (Sf )

6.6 Discussion

In this chapter, we addressed the problem of scheduling messages and tasks in a data aggre-

gation tree with the objective of minimizing the total energy consumption while meeting the

end-to-end latency constraint. We considered a model where each node in the tree supports

both DVS and DMS power management techniques. We presented analytical problem formu-

lations both for the ideal and practical performance scaling models. We also proved that the

scheduling problem is NP-Hard for the practical model and presented two heuristic scheduling

algorithms which allocate slack across different messages and tasks based on the energy gain

metric. We evaluated the performance of the proposed algorithms for a variety of scenarios

by varying the channel bandwidth, communication range and computational work load in the

network. Our results show that the energy savings obtained by the EGSA algorithm are com-

parable to that of the optimal solution obtained by solving the MILP. In our future work, we

plan to explore the energy-time tradeoffs offered by other power management techniques like

DCS and utilize these tradeoffs to address the above scheduling problem.



www.manaraa.com

141

CHAPTER 7. Conclusions and Future Work

In this dissertation, we addressed the energy management problem in networked embedded

real-time systems. We provided a comprehensive solution to this problem by addressing the

energy management at computing and communication subsystems of individual nodes in the

network.

Our goal was to design effective energy management strategies that would appropriately

leverage the low power modes supported by different components within each node of the

network to maximize overall system’s energy savings while guaranteeing the necessary real-

time constraints. We made the following contributions:

• Energy management at Computing System: Focusing on computation energy manage-

ment, we addressed the energy-aware real-time task scheduling problem where the ob-

jective is to minimize the processor energy consumption while guaranteeing all the task

deadlines. We employed the well known Dynamic Voltage Scaling (DVS) technique as

the basic underlying energy management mechanism. The proposed scheduling algo-

rithm exploits the control flow graph (CFG) information of each task and achieves a

better idea of the exact workload in the system at run-time as early as possible. Further,

this information was used to utilize the available slack to benefit the entire task-set as

opposed to using it within a single task. Our simulation studies show the presented

algorithm performs significantly better than the existing energy-aware task scheduling

algorithms. In our future work, we plan to extend the proposed early execution concepts

to periodic task system with shared resources. The early execution principle in such a

system requires taking into account not only the scheduler’s operation, but also the rules

of the resource access control protocol.



www.manaraa.com

142

• Energy management at Communication System: We addressed the energy-aware message

scheduling problem where the goal is to schedule a given set of periodic messages each

associated with a source and destination nodes in a single hop network. The objective of

the problem is to minimize the total communication energy consumption while meeting

all the message deadlines and reliability constraints. Unlike the task scheduling prob-

lem where all the tasks have identical energy-time functions, in the message scheduling

problem, each message has an associated source-destination distance which governs the

nature of the energy-time function of that message. As a result, this problem is funda-

mentally different from the task scheduling problem mentioned above. We addressed the

message scheduling problem for two different models and presented analytical solutions

to solve the problem optimally in both cases. Further, we also presented a polynomial

time heuristic scheduling algorithm for the case where the problem becomes NP-Hard. In

our future work, we plan to address the above problems for a different reliability model

where the required message reliability is achieved via retransmissions instead of a single

message transmission with high transmission power. We believe such a model results

in lesser system-level energy consumptions and offers greater opportunities for energy

management.

• System-level Energy Management - Single-hop: We made two major contributions here.

First, we analyzed the system-level energy-time tradeoffs considering both tasks and

messages in the system. This analysis can be used to solve any scheduling where slack

needs to be distributed across tasks and messages in the system. Further, we addressed

the specific problem of scheduling a set precedence constrained, message passing periodic

tasks. Assuming a feasible schedule is available, we proposed an energy-aware scheduling

algorithm which assigns CPU frequency to each task and modulation level to each mes-

sage in the system. Further, we also presented dynamic scheduling algorithms which will

utilize the dynamically generated slack in the system to further reduce the total energy

consumption. In our future work, we plan to extend this research by providing an opti-

mal solution through analytical approaches like integer linear programming formulation



www.manaraa.com

143

(ILP) and compare the performance of our algorithms against the same.

• System-level Energy Management - Multi-hop: We addressed the problem of minimizing

the total energy consumption of data aggregation with an end-to-end latency constraint

while taking into account both the computational and communication workloads in the

network. We then presented an analytical problem formulation for the ideal case where

each node can scale its frequency and modulation continuously. We also presented a

Mixed Integer Linear Programming (MILP) formulation to obtain the optimal solution

for the practical case where only few discrete frequency and modulation levels are sup-

ported by each node. Further, we presented polynomial time heuristic algorithms, which

employ the energy-gain metric established earlier. We evaluated the performance of the

proposed algorithms for a variety of scenarios and our results show that the energy sav-

ings obtained by the proposed algorithms are comparable to that of the MILP solution.

In our future work, we plan to develop online algorithms which would utilize the dynamic

slack that is generated in the schedule due to temporal and spatial data correlations. We

believe exploiting dynamic slack can further enhance the overall energy savings of the

system.

Broader Impacts

Beside the intellectual and academic contributions of this dissertation, we expect the fol-

lowing impact on the research community and industry, as follows:

• By demonstrating that system-level energy management yields better energy savings, the

work presented in this dissertation greatly widens the scope of the energy management in

networked real-time embedded systems. As a consequence, we strongly believe that more

research efforts will be focused along this direction by different research groups working

in this area. To support this, in the next subsection, we present a list of practical and

challenging open research problems that can be addressed based on our work here.

• Mobile device manufacturers like Apple and Sony can benefit from the cross-layer en-

ergy management algorithms presented in this thesis to implement an effective energy



www.manaraa.com

144

manager in each device e.g., cell phone or a mobile gaming device. The number of

computation-intensive applications that are stacked into a single device are gradually

increasing. For example, a state-of-the-art cell phone does video and audio playing in

addition to performing the conventional communication tasks like making calls to people.

This impending trend demands an effective energy manager which reduces overall en-

ergy consumption by adapting to the application behavior dynamically. The cross-layer

research presented in this thesis directly addresses this very issue.

• Companies like sensinet and crossbow deploy sensor networks for a variety of applica-

tions ranging from environmental monitoring/learning to military surveillance. These

applications require a capable system-level energy manager to ensure efficient utilization

of available energy and elongate the network lifetime. Such companies can benefit by

using different system-level energy management principles and algorithms presented in

this thesis.

Future Work

Several exciting energy-aware research problems can be addressed in this relatively unex-

plored area of networked real-time embedded systems. The work presented in this dissertation

opens up research in the following directions.

• The system-level energy management work presented in this thesis employs both com-

munication energy management (DMS) and computation energy management (DVS)

techniques in tandem to achieve significant energy savings. Following the system-level

principles presented in this thesis, other communication energy management techniques

(in place of DMS) can be explored in this framework to achieve better energy savings.

Similar to the DMS technique, a variety of physical layer techniques exist which allow to

gracefully tradeoff performance for communication energy savings. Such techniques in-

clude adapting the bit-error-rate and dynamically scaling code size. Each such low-level

power management technique can be explored in conjunction with DVS. Each such com-

bination needs further investigation and can be employed to obtain system-level energy



www.manaraa.com

145

savings.

• The energy management problem for a general multi-hop networked embedded real-time

system has not been solved yet. Although the solutions presented in this thesis cannot be

directly applied to solve the above problem, we believe that the basic principles presented

are still applicable. It would be interesting to extend the presented work to address the

general multi-hop problem.

• Further, the work presented in this dissertation primarily focussed on minimizing the

overall energy consumption of the networked real-time embedded system. An equally

important and yet to be solved problem is system-level lifetime maximization wherein,

the objective is to maximize the overall lifetime of the system by appropriately leveraging

both computation and communication energy management techniques while guaranteeing

the required real-time deadline and channel reliability constraints. We believe that the

system-level energy management principles derived in this dissertation can serve as a

basic ingredient in solving this problem, however, more work needs to be done to obtain

a complete solution.

• Finally, all the above listed problems as well as the system-level energy management work

presented in this thesis can be re-addressed by considering: (1) resource management

and access control issues along with the (2) the task preemptions. Considering these

issues makes the problem more challenging while addressing a wider range of practical

applications.



www.manaraa.com

146

BIBLIOGRAPHY

[1] Coordination of Safety-Critical Mobile Real-Time Embedded Systems, Work-

shop on Research Directions for Security and Networking in Critical Real-Time

and Embedded Systems, San Jose, CA, USA, 2006, apr, TCD-CS-2006-16,

http://www.cs.tcd.ie/publications/tech-reports/reports.06/TCD-CS-2006-16.pdf

[2] J. P. Loyall, R. E. Schantz, D. Corman, J. L. Paunicka, and S. Fernandez, “A distributed

real-time embedded application for surveillance, detection, and tracking of time critical

targets,” in Proc. IEEE Real Time and Embedded Technology and Applications Symposium

(RTAS), pp. 88-97, 2005.

[3] C.D. Gill, R.K. Cytron, and D.C. Schmidt, “Multiparadigm scheduling for distributed

real-time embedded computing,” Proc. the IEEE, vol. 91, no. 1, pp. 83-97, Jan. 2003.

[4] J.A. Stankovic, “Distributed Real-time Computing: The Next Generation,” Journal of

the Society of Instrument and Control Engineers of Japan, 1992.

[5] K. Ramamritham, J.A. Stankovic, and W. Zhao, “Distributed scheduling of tasks with

deadlines and resource requirements,” IEEE Trans. Computers, vol. 38, no. 8, pp. 1110-

1123, Aug. 1989.

[6] D.T. Peng and K.G. Shin, “Static allocation of periodic tasks with precedence constraints

in distributed real-time systems,”In Proc. Intl. Conf. on Distributed Computing Systems,

June 1989.

[7] K. Ramamritham, “Allocation and scheduling of precedence-related periodic tasks,” IEEE

Trans. Parallel and Distributed Systems, vol.6, no.4, pp.412-420, Apr. 1995.



www.manaraa.com

147

[8] D.-T. Peng, K. G. Shin, and T. F. Abdelzaher, “ Assignment and scheduling communicat-

ing periodic tasks in distributed real-time systems,” IEEE Trans. on Software Engineering,

vol. 23, no. 12, pp. 745-758, 1997.

[9] I. Santhoshkumar, G. Manimaran, and C. Siva Ram Murthy, “A Pre-run-time scheduling

algorithm for object-based distributed real-time systems,” Journal of Systems Architec-

ture, vol.45, no.14, pp.1169-1188, July 1999.

[10] T. D. Burd and R. W. Brodersen, “Energy efficient CMOS microprocessor design,” in

Proc. International Conf. on System Sciences, pp. 288-297, Jan. 1995.

[11] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low-power embedded

operating systems,” in Proc. ACM Symposium on Operating System Principles, pp.89-

102, 2001.

[12] S. Lee and T. Sakurai, “Run-time voltage hopping for low-power real-time Systems,” in

Proc. ACM Design Automation Conference (DAC), pp.806-809, 2000.

[13] A. Allavena and D. Moss, “Scheduling of frame-based embedded systems with rechargeable

batteries”, Workshop on Power Management for Real-Time and Embedded Systems, (in

conjunction with RTAS 2001).

[14] C. Rusu, R. Melhem and D. Mosse, “Maximizing rewards for real-time applications with

energy constraints,” IBM Journal of R&D, vol. 46, no. 5/6, 2003.

[15] H. Aydin, R. Melhem, D.Moss, and P.M. Alvarez, “Determining optimal processor speeds

for periodic real-time tasks with different power characteristics”, in Proc. Euromicro Con-

ference on Real-Time Systems, 2001.

[16] T. A. AlEnawy and H. Aydin, “Energy-constrained performance optimizations for real-

time operating systems,” in Proc. Workshop on Compilers and Operating Systems for Low

Power (COLP), Sept. 2003.



www.manaraa.com

148

[17] H. Aydin, R. Melhem, D. Mosse, and P.M. Alvarez, “Power-aware scheduling for periodic

real-time tasks,” IEEE Trans. Computers, vol.53, no.5, pp.584-600, May 2004.

[18] T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynamically variable voltage

processors,” in Proc. International Symposium on low power electronics and design, pp.

197-202, 1998.

[19] D. Shin and J. Kim, “A Profile-based energy-efficient intra-task voltage scheduling tlgo-

rithm for hard real-time applications,” in Proc. International Symposium on Low Power

Electronics and Design (ISLPED), Aug. 2001.

[20] D. Shin, J. Kim, and S. Lee. “Intra-task voltage scheduling on DVS-enabled hard real-time

systems,” IEEE Transactions on CAD, vol.24, no.9, Sep. 2005.

[21] D. Shin, J. Kim, and S. Lee. “Intra-task voltage scheduling for low-energy hard real-time

applications,” IEEE Design & Test of Computers, vol.18, no.2, pp.20-30, 2001.

[22] G. Sudha Anil Kumar, G. Manimaran, and Z. Wang, ”End-to-end energy management in

networked real-time embedded systems,” IEEE Trans. on Parallel and Distributed Systems

(TPDS), vol. 19, no. 11, pp. 1498-1510, Nov. 2008.

[23] P. Ganesan, R. Venugopalan, P. Peddabachagari, A. Dean, F. Mueller and M. Sichitiu,

”Analyzing and modeling encryption overhead for sensor network nodes”, in Proc. of ACM

Wireless Sensor Networks and Applications, 2003, pp. 151-159.

[24] http://euler.slu.edu/ fritts/mediabench/mb2/index.html

[25] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt, A. Veidenbaum, and A. Nicolau,

“Profile-based dynamic voltage scheduling using program Checkpoints in the COPPER

framework,” in Proc. Design Automation and Test in Europe, 2002.

[26] D. Shin and J. Kim, “Look-ahead intra-task voltage scheduling using data flow informa-

tion,” in Proc. ISOCC, pp.148-151, Oct. 2004.



www.manaraa.com

149

[27] J. Seo, T. Kim, and K. S. Chung, “Profile-based optimal intra-task voltage scheduling

for hard real-time applications,” in Proc. ACM Design Automation Conference (DAC),

pp.87-92, June 2004.

[28] D. Mosse, H. Aydin, B. Childers, and R. Melhem, “Compiler-assisted dynamic power-

aware scheduling for real-time applications,” in Proc. Workshop on Compilers and Oper-

ating Systems for Low-Power, Oct 2000.

[29] Y. Zhu and F. Mueller, ”Exploiting Synchronous and Asynchronous DVS for Feedback

EDF Scheduling on an Embedded Platform”, ACM Transactions on Embedded Computing

Systems, Vol. 7, No. 1, Dec 2007, pages 1-26.

[30] Y. Zhu and F. Mueller, ”Feedback EDF Scheduling Exploiting Dynamic Voltage Scaling,”

in Proc. of IEEE Real-Time and Embedded Technology and Applications Symposium, 2004,

pp.84-93.

[31] N. AbouGhazaleh, B. Childers, D. Mosse, R. Melhem, and M. Craven, “Energy man-

agement for real-time embedded applications with compiler support,” ACM SIGPLAN,

LCTES’03, June 2003.

[32] H. Huang, K. G. Shin, C. Lefurgy, K. Rajamani, T. W. Keller, E. V. Hensbergen, and F.

L. Rawson, “Software-Hardware Cooperative Power Management for Main Memory,” in

Proc. PACS, 61-77, 2004.

[33] O.S. Unsal and I. Koren, “System-level power-aware design techniques in real-time sys-

tems,” Proceedings of the IEEE, vol. 91, no. 7, pp. 1055-1069, July 2003.

[34] A. Mahesri and V. Vardhan, “Power Consumption Breakdown on a Modern Laptop,” in

Proc. Workshop on Power Aware Computing Systems, in conjunction with Intl. Symp.

Microarchitecture, Dec. 2004.

[35] K. I. Farkas, J. Flinn, G. Back, D. Grunwald, and J. Anderson, “ Quantifying the energy

consumption of a pocket computer and a Java virtual machine,” in Proc. ACM SIGMET-

RICS, pp. 252-263, June 2000.



www.manaraa.com

150

[36] C. Schurgers, O. Aberthorne and M. B. Srivasthava, ”Modulation Scaling for Energy

Aware Communication Systems”, ISLPED, 2001.

[68] V. Raghunathan, C. Schurgers, S. Park, and M. B. Srivastava, “Energy-aware wireless

microsensor networks,” IEEE Signal Processing Magazine, vol.19, no.2, pp. 40-50, Mar.

2002.

[38] C. Schurgers, V. Raghunathan, and M. B. Srivastava, “Modulation scaling for real-time

energy aware packet scheduling,” in Proc. IEEE Globecom, pp.3653-3657, Nov. 2001.

[76] V. Raghunathan, S. Ganeriwal, C. Schurgers, and M. B. Srivastava, “E2WFQ: An energy

efficient fair scheduling policy for wireless systems,” in Proc. International Symposium on

Low Power Electronics and Design (ISLPED), pp. 30-35, Aug. 2002.

[40] V. Raghunathan, C.L. Pereira, M.B. Srivastava and R.K. Gupta, ”Energy-aware wireless

systems with adaptive power-fidelity tradeoffs”,IEEE Trans. on VLSI Systems, Vol.13,

Issue 2, Feb 2005 pp. 211-225.

[41] K. Chen, S. Shah, and K. Nahrstedt, “Cross-Layer design for data accessibility in mobile

ad-hoc networks,” Wireless Personal Communications, vol. 21, no.1, pp.49-76, 2002.

[42] Q. Wang and M. Ali Abu-Rgheff, “Cross-layer signaling for next-Generation wireless sys-

tems,” in Proc. WCNC, 2003.

[43] F. A. Samimi, P. K. McKinley, S. M. Sajdadi, and P. Ge, “Kernel-middleware interac-

tion to support adaptation in pervasive computing environments,” in Proc. Workshop on

Middleware for Pervasive and Adhoc Computing, 2004.

[44] W. Yuan and K. Nahrstedt, “ Process group management in cross-layer adaptation,” in

Proc. SPIE/ACM Multimedia Computing and Networking, 2004.

[45] Y. Koucheryavy, D. Moltchanov, J. Harju, and G. Giambene, ‘ ‘Cross-layer black box ap-

proach to performance evaluation of next-generation mobile networks,’ in Proc. NEW2AN,

pp.273-281, 2004.



www.manaraa.com

151

[46] M. Garey and D. Johnson, ”Computers and Intractability: A Guide to the Theory of

NP-Completeness”, New York: W. H. Freeman and Co., 1979.

[47] J. R. Lorch and A. J. Smith, ”Improving Dynamic Voltage Scaling Algorithms with

PACE,” in Proc. of ACM SIGMETRICS International Conference on Measurements and

Modeling of Computer Systems, June. 2001, pp. 50-61.

[48] W. Yuan and K. Nahrstedt, ”Energy-Efficient Soft Real-Time Scheduling for Mobile Mul-

timedia Systems,” in Proc. of ACM Symposium on Operating systems Principles, 2003,

pp. 149-163.

[49] R. Xu, C. Xi, R. Melhem and D. Mosse, ”Pratical PACE for Embedded Systems”, in

Proc. of 4th ACM International Conference on Embedded Software, Sept. 2004, pp. 54-63.

[50] R. Xu, D. Mosse and R. Melhem,”Minimizing Expected Energy for Real-Time Embedded

Systems”, in Proc. of 5th ACM SIGBED International Conference on Embedded Software,

Sept. 2005, pp. 251-254.

[78] K. Seth, A. Anantaraman, F. Mueller, E. Rotenberg, ”FAST: Frequency-Aware Static

Timing Analysis,” in Proc. of IEEE Real-Time Systems Symposium, Dec. 2003, pp. 40-

51.

[52] S. Mohan, F. Mueller, W. Hawkins, M. Root, D. Whalley and C. Healy, ”ParaScale:

Exploiting Parametric Timing Analysis for Real-Time Schedulers & Dynamic Voltage

Scaling,” in Proc. of IEEE Real-Time Systems Symposium, Dec. 2005.

[79] H. Aydin, R. Melhem, D. Mosse & P. Mejia-Alvarez, ”Power-Aware Scheduling for Peri-

odic Real-Time Tasks”, IEEE Transactions on Computers, vol. 53, no. 5, pp. 584 - 600,

2004.

[54] G. S. Anil Kumar and G. Manimaran, “An intra-task DVS algorithm exploiting program

path locality for real-time embedded systems” in Proc. of IEEE International Conference

on HiPC, Dec. 2005, pp.225-334.



www.manaraa.com

152

[55] N. AbouGhazaleh, D. Mosse, B. Childers, R. Melhem, and M. Craven “Collaborative

Operating System and Compiler Power Management for Real-Time Applications,” in Proc

of IEEE Real-Time and Embedded Technology and Applications Symposium, 2003, pp.

133-141.

[56] F. Gruian, ”On energy reduction in hard real-time systems containing tasks with stochas-

tic execution times,” in Proc. of IEEE Workshop on Power Management for Real-Time

Embedded Systems, 2001, pp.11-16.

[82] www.intel.com/design/pca/applicationsprocessors/manuals/27878002.pdf

[58] www.amd.com/us-en/assets/content type/white papers and tech docs/30417.pdf

[59] www.fsmlabs.com

[60] W. Ye, J. Heidemann and D. Estrin “ An Energy-Efficient MAC Protocol for Wireless

Sensor Networks,” Proc. of IEEE INFOCOM, 2002

[61] R. Cohen and B. Kapchits, “An Optimal Algorithm for Minimizing Energy Consumption

while Limiting Maximum Delay in a Mesh Sensor Network”, Proc. of IEEE INFOCOM,

May 2007

[62] E. Altman, K. Avrachenkov, G. Miller and B. Prabhu, “Discrete Power Control: Cooper-

ative and Non-Cooperative Optimization”, Proc. of IEEE INFOCOM, May 2007.

[63] S. Banerjee and A. Misra, “Power Adaptation based Optimizations for Energy-Efficient

Reliable Wireless Paths”, Networking, Athens, Greece, May 2004.

[64] W. Chen, M. J. Neely, and U. Mitra, “Energy Efficient Scheduling with Individual Packet

Delay Constraints: Offline and Online Results,” Proc. of IEEE INFOCOM, May 2007

[65] C. Schurgers, “Energy-Aware Communication Systems,” Ph.D. Thesis in Electrical Engi-

neering, University of California, Los Angeles, 2002.

[66] B. Prabhakar, E. Uysal-Biyikoglu and A. El Gamal “Energy-efficient Transmission over a

Wireless Link via Lazy Packet Scheduling,” Proc. of IEEE INFOCOM, 2001.



www.manaraa.com

153

[67] W. Chen and U. Mitra, “Energy Efficient Scheduling with Individual Packet Delay Con-

straints,” Proc. of IEEE INFOCOM, 2006.

[68] C. Schurgers, O. Aberthorne and M. B. Srivasthava, ”Modulation Scaling for Energy

Aware Communication Systems”, ISLPED, 2001.

[69] A. El Gamal, C. Nair, B. Prabhakar, E. Uysal-Biyikoglu and S. Zahedi “Energy-efficient

Scheduling of Packet Transmissions over Wireless Networks,” Proc. of IEEE INFOCOM,

2002.

[70] Y. Yang, B. Krishnamachari and V.K. Prasanna, “Energy Minimization for Real-Time

Data Gathering in Wireless Sensor Networks”, IEEE Trans. on Wireless Communications,

Vol. 5, No. 11, Nov. 2006.

[71] C. Siva Ram Murthy and G. Manimaran, “Resource Management in Real-time Systems

and Networks”, MIT Press, USA, April 2001.

[72] K. Dudzinski and S. Walukiewicz, “ Exact methods for the knapsack problem and its

generalizations,”, European Journal of Operations Reseach, vol. 28, 1987, pp. 3-21.

[73] S. Boyd and L. Vandenberghe, “ Convex Optimization,” Cambridge University Press,

2004.

[74] www.cplex.com

[75] V. Raghunathan, S. Ganeriwal, C. Schurgers, and M. B. Srivastava, “E2WFQ: An energy

efficient fair scheduling policy for wireless systems,” in Proc. of ISLPED, pp. 30-35, Aug.

2002.

[76] C. Schurgers, V. Raghunathan, and M. B. Srivastava, “Modulation scaling for real-time

energy aware packet scheduling,” in Proc. IEEE Globecom, pp.3653-3657, Nov. 2001.

[77] V. Raghunathan, C.L. Pereira, M.B. Srivastava and R.K. Gupta, “Energy-aware wireless

systems with adaptive power-fidelity tradeoffs,” IEEE Trans. on VLSI Systems, Vol.13,

no. 2, 2005 pp. 211-225.



www.manaraa.com

154

[78] K. Seth, A. Anantaraman, F. Mueller, E. Rotenberg, ”FAST: Frequency-Aware Static

Timing Analysis,” in Proc. of IEEE RTSS, pp.40-51, Dec. 2003.

[79] H. Aydin, R. Melhem, D. Moss & P. Mejia-Alvarez, ”Power-Aware Scheduling for Periodic

Real-Time Tasks”, IEEE Trans. on Computers, vol. 53, no. 5, pp. 584 - 600, 2004.

[80] H. Aydin, V. Devadas and D. Zhu, “System-level Energy Management for Periodic Real-

Time Tasks”, In Proc. of IEEE RTSS, Dec. 2006.

[81] Bren Mochocki, Dinesh Rajan, Xiaobo Sharon Hu, Christian Poellabauer, Kathleen Otten,

and Thidapat Chantem, “Network-Aware Dynamic Voltage and Frequency Scaling”, In

Proc. of IEEE RTAS, April 2007.

[82] www.intel.com/design/pca/applicationsprocessors/manuals/27878002.pdf

[83] J. S. Pathasuntharam, A. Das and P. Mohapatra, “A Flow Control Framework for Improv-

ing Throughput and Energy Efficiency in CSMA/CA based Wireless Multihop Networks”,

WOWMOM’06, pp.143-149, 2006.

[84] C. Zhu and M. S. Corson, “QoS routing for mobile ad hoc networks”, IEEE Infocom, June

2001

[85] J.M. Miller, C. Sengul and I. Gupta, ”Exploring the Energy-Latency Trade-Off for Broad-

casts in Energy-Saving Sensor Networks”, ICDCS, 2005.

[86] A.G. Ruzzelli, L. Evers, S. Dulman, L.F.W. van Hoesel and P.J.M. Havinga, ”On the

design of an energy-efficient low-latency integrated protocol for distributed mobile sensor

networks”, Intl. Workshop on Wireless Ad-Hoc Networks, 2004, pp.35-44

[87] L. Y. Zhang, G. Ye and J. Hou, ”Energy-efficient real-time scheduling in IEEE 802.11

wireless LANs”, ICDCS, 2003, pp. 658-677

[88] Y. Yang, B. Krishnamachari and V.K. Prasanna, “Energy-latency tradeoffs for data gath-

ering in wireless sensor networks”, IEEE Infocom, 2004.



www.manaraa.com

155

[89] R. Mangharam, S. Pollin, B. Bougard, R. Rajkumar, F. Catthoor, L. V. Perre and I.

Moemann, “Optimal Fixed and Scalable Energy Management for Wireless Networks”, in

Proc. of IEEE Infocom, 2005.

[90] S. Choi and K.G. Shin, “A Unified Wireless LAN Architecture for Real-Time and Non-

Real-Time Communication Services”, IEEE/ACM Transactions on Networking, vol. 8,

no. 1, pp.44-59, 2000.

[91] H. Li, P. Shenoy and K. Ramamritham, “Scheduling messages with deadlines in multi-hop

real-time sensor networks”, in Proc. of IEEE RTAS, pp. 415-425, May 2005.

[92] Q. Liu, S. Zhou, and G.B.Giannakis, “Cross-Layer Scheduling With Prescribed QoS Guar-

antees in Adaptive Wireless Networks”, IEEE Journal on Selected Areas in Communica-

tionsvol. 23, No.5, May 2005.

[93] S. Pollin, R. Goyens, W. Cleeren and B. Bougard, “Cross-Layer Energy-Throughput Eval-

uation of Multi-hop/path Communication and Link Adaptation for IEEE 802.11a”, in

Proc. of SIPS, 2005.

[94] J. H. Chang and L. Tassiulas, “Energy Conserving Routing in Wireless Ad-Hoc Networks”,

in proc. of IEEE Infocomm, pp. 22-31, 2000.

[95] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, “Introduction to Algorithms,”

MIT press, Cambridge, MA, U.S.A, 2001.

[96] K. Ramamritham, “Allocation and scheduling of precedence-related periodic tasks,” IEEE

Trans. Parallel and Distributed Systems, vol.6, no.4, pp.412-420, Apr. 1995.

[97] J. Proakis, “Digital Communications,” McGraw-Hill, 4th Ed., 2001.

[98] B. przydatek, D. Song, and A. Perrig, “ Secure information aggregation in sensor net-

works,” in Proc. of ACM Intl. Conf. on Embedded Networked Sensor Systems, Nov. 2003.



www.manaraa.com

156

[99] Y. Le Borgne, G. Bontempi, “Round robin cycle for predictions in wireless sensor net-

works,” Proc. of 2nd Intl. Conf. on Intelligent sensors, Sensor networks and Information

Processing, 2005.

[100] A. Desphande, C. Guestrin, S. Madden, J. Hellerstein, W. Hong, “Model driven data

acquisition in sensor networks,” Proc. of the 30th VLDB conference, 2004.

[101] L. Tong, Q. Zhao, and G. Mergen, “ Multipacket reception in random access wireless

networks: From signal processing to optimal MAC,” IEEE Comm. Mag., vol. 39, no. 11,

pp. 108-112, Nov. 2001.

[102] G. Sudha Anil Kumar, G. Manimaran, and Z. Wang, “Energy-aware Scheduling of Real-

Time Tasks in Wireless Networked Embedded Systems,” in Proc. of IEEE Real-Time

Systems Symposium, pp. 15-24, Tucson, AZ, Dec. 2007.

[103] S. Luke and L. Panait, “A Survey and Comparison of Tree Generation Algorithms,” In

Proc. of Genetic and Evolutionary Computation Conference, 2001.

[104] G. Sudha Anil Kumar, G. Manimaran, and Z.Wang, ”Energy-aware scheduling with

probabilistic deadline constraints in wireless networks”, Elsevier Journal on Ad Hoc Net-

works, vol. 7, no. 7, pp. 1400-1413, Sep. 2009.

[105] G. Sudha Anil Kumar, G. Manimaran, and Z. Wang, Energy-aware scheduling with

deadline and reliability constraints in wireless networks, in Proc. of IEEE Broadnets -

Wireless Networks Symposium, pp. 96-105, Raleigh, NC, Sept. 2007.


	2009
	System level energy management in networked real-time embedded systems
	Sudha Anil Kumar Gathala
	Recommended Citation


	anil-thesis.dvi

